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EXECUTIVE SUMMARY 

The state of Oklahoma is making a push to eliminate all structurally deficient 
bridges within the state by the year 2020 after consistently ranking near the bottom of 
the national list of structurally deficient bridges in the early 2000s. In order to address 
shear capacity concerns related to additional bridges not currently classified as 
deficient, the research described in this report was initiated by ODOT focused on a 
comprehensive study of two AASHTO Type II girders obtained from the I-244 bridge 
over the Arkansas River in Tulsa during its replacement in 2013 after about 47 years in 
service. The shear capacity of the prestressed girders used for this bridge and others 
built during the same time period is a concern because the AASHTO Standard 
Specifications used to design these girders employed a less conservative design 
methodology, often referred to as the “quarter-point rule”, than what is specified in the 
current AASHTO LRFD Specifications. Approximately one fourth of the bridges (not 
including culverts) in Oklahoma are precast prestressed concrete girder and slab 
bridges, and of these, approximately 10% (400) were designed and put into service 
using the so called “quarter-point rule” in the AASHTO Standard Specifications, leaving 
them potentially vulnerable to concerns with shear capacity. Bridges designed earlier, in 
the 1960s and 1970s, are potentially more vulnerable since they used lower strength 
Grade 40 shear reinforcement. As the state makes a major push to replace structurally 
deficient bridges, it is important to have a clear understanding of the actual capacity of 
in-place bridges designed under the past specifications when rating using the current 
specifications. This understanding could potentially have a major influence on whether a 
particular bridge requires load posting or replacement. 
 

The two girders examined in this project are representative of separate designs 
for 30 ft and 46 ft spans. Both girders were subjected to a battery of non-destructive 
tests to assess the effects of damage over time and to destructive shear testing at each 
end. The project included a detailed study of the contribution of the bridge deck and 
entire bridge system to shear capacity through testing the real-world girders with a 
section of the original deck and diaphragms intact, through construction and testing of a 
scaled composite bridge section, and through detailed structural analysis. This research 
provided important information on the structural and composite behavior of aged 
prestressed girder bridges critical to shear and on methods for identifying properties of 
aged members, structural health monitoring, and damage detection. 

 
As has been reported in the literature, shear capacity calculations can vary 

dramatically and the results described in this report indicate limited agreement between 
different methods. The girders that were tested showed good ductility and a large 
amount of cracking before failure, despite being in service for more than 45 years. 
Corrosion at the ends did cause some issues, especially at high loads. Spalling was 
often initiated by the corrosion cracking at the ends, potentially leading to bond loss. 
Bond loss behavior due to corrosion is important since similar deterioration is common 
in simply supported precast concrete girder bridges in Oklahoma. The 2012 AASHTO 
LRFD simplified method was not a conservative method to calculate shear capacity for 
the bridge girders tested, and this research indicated that the Modified Compression 
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Field Theory methods of 2004 AASHTO LRFD is the best balance of accuracy and 
conservativism. In all tested cases however, the applied loads exceeded expected loads 
determined from shear capacity calculations or flexural capacity by strain compatibility 
depending on the failure type. Experimental loads also exceeded demands calculated 
using the current design loads and load distribution factors. Testing of the scaled bridge 
girders and scaled composite bridge section indicated that the composite section added 
significant shear capacity compared to an individual girder. 

 
A number of methods were evaluated for determining properties of aged girders 

and monitoring structural health. A simple yet effective 1-D model was established by 
leveraging an existing initial value problem model for concrete creep and strand 
relaxation in post-tensioned concrete and Guyon’s instantaneous elastic shortening 
analysis based on a boundary value problem to predict time-dependent behaviors of 
pretensioned concrete. By directly utilizing draw-in time history measured from a 
pretensioned concrete beam and other section and material properties, many facets of 
bond-transfer behavior can be predicted revealing the insights into the time-dependent 
interaction of strand and concrete that would otherwise be obscure in current literature. 
Backbone analysis methods for free vibration data were substantially advanced through 
work on the project and have great potential for nonlinear system identification and 
damage detection purposes in prestressed concrete bridges. System identification of 
flexural rigidity based on elastic flexural testing data and using cracking moment to 
evaluate effective prestress force were also shown to be effective methods. 
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1. INTRODUCTION 

1.0 Nomenclature 
Av  area of shear reinforcement within spacing, s (in2) 

b’  width of web (in.) 

bv  effective web width taken as the minimum web width within dv (in.) 

bw  width of web (in.) 

d  distance from extreme compression fiber to centroid of tensile 
reinforcement (in.) 

dp  depth to centroid of prestress force from extreme compression fiber (in.) 

dv  effective shear depth taken as the distance between the resultant tensile 
and compressive forces due to flexure (in.) 

f’c  specified compressive strength of concrete (psi) 

fd  stress due to unfactored dead load at tension face (psi) 

fpc  compressive stress in concrete after losses at centroid of the section 
resisting external loads or at the junction of the web and the flange when 
the centroid is within the flange (psi) 

fpe  stress in concrete due to effective prestress force at tension face (psi) 

fsy  tensile capacity of shear reinforcement (psi) 

fyt  yield strength of transverse reinforcement (psi) 

I  moment of inertia of cross-section (in4) 

j  ratio of distance between centroid of compression and centroid of tension 
and total depth 

Mcre  moment causing flexural cracking at section due to external loads (in.-lb) 

Mmax  maximum factored moment due to external loads (in.-lb) 

Mu  factored moment at section (in.-lb)  

s spacing of shear reinforcement at section (in.) 

sxe  a spacing factor given in the code 

Vc  concrete contribution to shear strength (lb) 

Vci  nominal shear strength provided by concrete when diagonal cracking 
results from combined shear and moment (lb) 

Vcw  nominal shear strength provided by concrete when diagonal cracking 
results from high principal tensile stress in web (lb) 

Vd  shear force at section due to unfactored dead load (lb) 
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Vi  factored shear force at section due to externally applied loads associated 
with Mmax (lb) 

Vn  nominal shear capacity (lb) 

Vp  vertical component of effective prestress force at section (psi) 

Vs  steel contribution to shear strength (lb) 

Vu  factored applied shear at section (lb) 

yt  distance from centroid of gross section to tension face (in.) 

α  angle of inclination of transverse reinforcement 

εs  net longitudinal tensile strain at the centroid of the tension reinforcement 

λ  modification factor for lightweight aggregate; 1.0 for normal weight 

 

1.1 Background and Motivation 
In 2013, two bridge girders were selected from separate spans of the eastbound 

side of the I-244 bridge over the Arkansas River in Tulsa, OK for testing at the Fears 
Structural Engineering Laboratory at the University of Oklahoma (OU). The bridge was 
constructed in the late 1960’s and its demolition in 2013 provided a rare opportunity to 
test girders that were in service for decades. The ends of the girders included some 
corrosion damage that is typical of urban bridges in Oklahoma and may have some 
effect on the shear capacity of the girders. The Oklahoma Department of Transportation 
(ODOT) is interested in the shear capacity of older bridge girders because of the 
deterioration of the end regions and because these girders were designed under an 
older version of the American Association of State Highway and Transportation Officials 
(AASHTO) bridge code. The bridge code at the time assumed a different critical section 
for shear (the quarter span point) than what is used today and also provided a different 
method of calculating shear capacity. The design demands from the previous code and 
the deterioration over time combine to potentially result in low ratings for shear using the 
current methods. It is possible that the older designs are not only less conservative for 
shear, but the presence of corrosion could reduce the bond of prestressing strands near 
the member ends. In addition to the specific concerns of ODOT, there have been few 
previous studies of bridge girders at the end of their service life, and even fewer that 
considered shear capacity specifically. 
 

This report presents results from the research including a comparison of tested 
capacities from both ends of the two bridge girders to AASHTO codes and the American 
Concrete Institute (ACI) code (AASHTO 1973; AASHTO 2012; ACI 2014).  No literature 
was found documenting shear performance of aged Type II girders, so this research 
adds to the body of knowledge on shear. Issues of corrosion of the girder ends were 
also examined as they relate to the performance of the beam up to the quarter span 
point. The information gained from the testing described is intended to inform rating 
decisions for bridges constructed with similar girder designs and deterioration. 
Additionally, methods for examining behavior and identifying important characteristics 
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from in-service girders were investigated and developed, and the results of these efforts 
are also presented. 
 

The end regions of concrete members are of particular importance to the 
designer of a prestressed concrete girder for several reasons. The ends are where the 
largest shear forces are present, where prestress force is transferred to the concrete, 
where the largest stresses due to prestress release are located if no harping or strand 
debonding is utilized, and where corrosion is most likely to occur. Corrosion at this 
location is common because joints between simply supported spans tend to leak water 
and deicing chemicals on the ends of the girders. Even though the stress at the extreme 
end is zero, the “end” of the girder in this report refers to the first quarter of the span 
(because this was the critical section for shear at the time these girders were designed). 
The strand transfer length is included in this section. While the presence of a prestress 
force improves the shear capacity of a section, strand bond can be lost when shear 
cracking occurs (Kaufman and Ramirez 1988; Nordby and Venuti 1957). If bond is lost, 
the capacity of the member is significantly diminished.  
 

1.2 Problem Statement 
The project described in this report consisted of a comprehensive study including 

both testing and analysis of two real-world AASHTO Type II girders obtained during 
replacement of the I-244 bridge over the Arkansas River in Tulsa after about 47 years in 
service. It also included detailed study of composite action in the form of testing the 
real-world girders and a scaled composite bridge section. This research provides critical 
supplemental information and improves upon previous research focused on the shear 
capacity of one real-world girder sponsored by ODOT at the University of Oklahoma 
and answers numerous questions concerning bridge girders put into service during the 
same time period. It includes detailed information concerning composite behavior of 
prestressed girder bridges critical to shear. It also provided opportunities for a significant 
quantity of additional research focused on identifying important properties of in-service 
bridges using non-destructive testing methods. 
 

1.3 Project Objectives 
1. Identify, obtain and transport representative girders from the I-244 bridge site to 

the laboratory. 
 

2. Analyze girders and composite structures for shear based on 

• AASHTO Standard Specifications 

• AASHTO LRFD Specifications 
 

3. Conduct analytical and numerical analysis of transfer bond/transfer length 
behavior. 
 

4. Perform system identification to determine effectiveness of the various methods 
and girder parameters including: transfer length, effective prestress, and other 
properties of aged real-world girders. 
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5. Conduct shear capacity tests on each end of the girders including composite 
action. 
 

6. Perform load tests on a scaled beam-slab structure to experimentally determine 
the composite action. 
 

7. Conduct experimental analysis to determine actual transfer bond parameters for 
use in the analytical analysis of prestress transfer. 

 

1.4 Previous Research on Shear in Aged Girders 

1.4.1 Overview 
Several state departments of transportation and other states entities have 

studied the behavior of girders after many years of service. ODOT has sponsored some 
research on the behaviors of girders after they have been in service, and the study 
described in this report extends the previous research, Pei et al. (2008). Previous 
studies were examined to help decide the best methods for predicting the capacities, 
procedures for testing, ways to place the instrumentation, and methods of analyzing the 
data.   
 

There have been few studies that looked specifically at the shear capacity of 
older concrete girders. A number of studies have been conducted to test aged 
prestressed concrete girders for residual prestress or flexural strength (Shenoy and 
Frantz 1991; Halsey and Miller 1996; Pessiki et al. 1996; Czaderski and Motavelli 2006; 
Lundqvist and Riigimaki 2010), but few have focused specifically on shear capacity.  
 

Several studies were performed at the University of Florida on large scale 
sections in shear. In these studies, the researchers focused on varying the shear span 
to depth (a/d) ratio, which alters the interaction between bending and shear stresses. 
These studies found that for a/d ratios of 3 or less, bond shear failures are common. 
When a/d is approximately equal to 4, compression or shear-compression failures 
occurred. Finally, at a/d of 5 or greater the failure mechanism transitioned to flexure. 
This work also found the ACI and Modified Compression Field Theory (MCFT) methods 
to be conservative for a/d of 3 or less (Hamilton et al. 2009; Ross et al. 2011). 
 

At the University of Utah, seven 42-year-old girders were recovered for shear 
tests. These tests were performed at an a/d ratio of 1.5 using a single point load. Code 
equations were found to be conservative and Strut and Tie Modeling (STM) was more 
accurate given that the load was near the support (Osborn et al. 2010). 
 

Prior work at the University of Oklahoma (OU) was conducted in 2008 when 
researchers tested a 40-year-old AASHTO Type II girder in the lab to compare the 1973 
and 2004 AASHTO codes. This girder was tested at a/d of 1.0 and the researchers 
found that all codes were conservative at this location (Martin et al. 2011). The study 
described in this report is a continuation of this work for ODOT, testing larger a/d ratios. 
The girder in this older study was damaged and the deck had been completely 
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removed, so the current study expands the work to girders in better condition with 
partial deck and diaphragms remaining. 
 

1.4.2 Factors Affecting Shear Behavior in Aged Prestressed Girders 
Shear behavior depends on many factors such as the span to depth ratio (a/d), 

concrete tensile strength, shear reinforcement, and effective prestress. When a 
specimen ages, other factors add to the complexity – loss of bond of the prestressing 
strands in the end regions and deterioration of the concrete. Nordby and Venuti (1957) 
found that the prestressing strands lost bond after the concrete had cracked. They 
found that fatigue failure did not occur when the specimens were uncracked. End slip 
did occur when the span to depth ratio was small, specifically when the embedment 
length was less than 6 feet (Nordby and Venuti 1957). 

 
Kaufman and Ramirez (1988) ran tests on I-beams with the shear span within the 

development length and outside the development length. End slip occurred in the tests 
with the shear span within the development length but not in the spans outside the 
development length. Tests were done on beams with and without shear reinforcement.  
The shear reinforcement provided the concrete with the capability to withstand higher 
load which increased the shear capacity (Kaufman and Ramirez 1988). 
 

Maruyama and Rizkalla (1988) focused on the effects of small shear span to 
depth ratio and shear reinforcement on the shear capacity. The beams failed before 
expected and end slip was recorded due to the critical section being within the 
development length. Cracks occurred at the location that the ACI 318 code predicted for 
the development length. Strain gauges on the stirrups showed yielding of stirrups before 
the prestressing strands slipped. The beam could not be failed in shear due to the 
slippage of the strands and yielding of a portion of the stirrups (Maruyama and Rizkalla 
1988). 
 

1.4.3 Shenoy and Frantz (1991) 
Two post-tensioned box girders with spans of 45 feet were taken from a 

deteriorated bridge for replacement with new girders and tested. The box girders were 
36 in. by 27 in. and 27 years old. One of the girders did not have any visual cracking or 
corrosion. The other exhibited cracking and spalling. The goal of this study was to 
determine the strength, prestress losses and amount of chloride ions within the concrete 
causing corrosion (Shenoy and Frantz 1991). 
 

Calculations were made to estimate the maximum load and deflection. The 
deflection was calculated using the moment area method and ACI code was used to 
determine the maximum load. The girders were simply supported on 2 in. diameter 
rollers placed on piers. The girder was loaded at third points to mimic the loading of two 
axles. At midspan of the girder, eighteen inches of concrete that covered the 
prestressing strands were removed to place strain gauges on the strands. Strain 
gauges were also placed at the top and sides at midspan of the girder. The two rams at 
each load point were connected with prestressing strands to rocker plates at the web. 
The rams could only extend five inches so chucks were used to maintain the load while 
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the ram was reset. Each time the ram was reset, the instrumentation was documented 
and cracks marked. The test was ended after the girder could not support any additional 
load (Shenoy and Frantz 1991). 
 

The design plans were not available at the time of testing so the researchers had 
to assume the material properties of the girders. The compressive strength was initially 
assumed to be 6000 psi, but was determined to be higher with compressive tests. Eight 
cores were taken after testing to determine the modulus of elasticity and compressive 
strength. Samples of the prestressing strands were taken to test for strand strength and 
to determine the modulus of elasticity (Shenoy and Frantz 1991). 

 
The study found that the two beams behaved similarly. The beams showed linear 

elasticity until flexural cracking. The estimated capacities were very close to the actual 
capacities of the girders. The cracks were typical flexural cracks, and very few shear 
cracks occurred. Concrete strains were linear until flexural cracking occurred. The 
measured strain of the strands was determined to be inconsistent and determined to not 
add any information to the results. The measured prestress losses were determined 
with a cracking moment test. The girder was loaded until a crack was observed and 
reopened to calculate the prestress losses. The measured prestress losses were much 
less than the predicted losses (Shenoy and Frantz 1991). 
 

1.4.4 Shahawy et al. (1993) 
 The study was conducted on thirty-three AASHTO type II girders that were 
specifically made for the research. The goals of this study were to determine the 
development length and shear strength of the girders (Shahawy et al. 1993). 
 

The study was designed to test each end of the girder to failure, first by testing 
one end then moving the supports, thereby eliminating the damage from the span, and 
testing the other end. LVDTs were placed on the end of the strand to measure any end 
slip of the strand to determine if bond was lost during any test (Shahawy et al. 1993). 

 
The shear strengths were compared to predicted value from AASHTO 1989, 

current specifications at the time, and the revisions from 1990 and 1991 Interim 
Specifications for that code to evaluate the effectiveness of the changes. The results 
from the study would help with modifications to the future AASHTO code. The 
conclusion was the AASTHO 1989 specifications estimated the shear capacity better 
than the revised specifications (Shahawy et al. 1993). 

 

1.4.5 Pessiki et al. (1996) 
 Two prestressed I-beams, 24 in. wide by 60 in. tall with a span of 89 feet, were 
taken from a bridge in service for 28 years to test. The beams were still in good 
condition upon removal. The beams were tested in three-point bending. The beams 
were first loaded to cracking, and then were unloaded and the crack was reopened. The 
beams were finally loaded to failure (Pessiki et al. 1996). 
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 Strain was measured between the shear cracks using strain gauges. The load vs 
strain plots were evaluated to determine the cracking load along with the visual 
observation. The plots exhibited a bilinear response and the point where the slope 
changed was taken as the cracking load. The effective prestress force was then 
determined using the cracking load, section properties and elastic analysis. Cores were 
taken from the beam and tested for modulus of elasticity and compressive strength. 
Failure was due to crushing of the concrete in the compression zone before the beam 
could fail due to shear or flexural cracking (Pessiki et al. 1996). 
 

1.4.6 Pei et al. (2008) 
 Research was previously done at the University of Oklahoma on a similar project 
to the one described in this report, which is an extension to the previous work. The 
earlier study examined the shear capacity of a single AASHTO Type II girder taken from 
the westbound side of the I-244 bridge over the Arkansas River in Tulsa, Oklahoma, 
after being in service for several decades. The research was performed to determine 
the shear capacity, prestress losses, and material properties of the AASHTO Type II 
girder. The girder was not carefully removed from the bridge and had been abandoned; 
it was corroded on one end which was retrofitted with fiber reinforced polymer sheets, 
and all of the deck had been removed.  
 

Elastic flexural tests were done on the girder to determine the stiffness. The 
girder was supported four different ways to get a thorough analysis of the stiffness. The 
support conditions were 30 feet apart with a 5 foot cantilever on each side, 35 feet apart 
with a 5 foot cantilever on the retrofitted end, 35 feet apart with a 5 foot cantilever on the 
other end, and simply supported 40 foot span. The load point was placed at midspan 
and 10 feet on either side of midspan. A test was run with each support condition and 
load condition for a total of 12 tests. The stiffness was determined for the girder 
assuming it was not constant along the length of the girder. The camber of the girder 
was also measured. 
 

Shear tests were performed on the girder with the load point located three feet 
from end of the girder to guarantee a shear failure. The damaged ends of the girder 
were then cut off and more shear tests were performed. The shear capacity calculated 
using AASHTO-Standard Specifications (1973), AASHTO-LRFD (2004) and ACI 
Committee 318-08 (2008) were compared to each other. The experimental shear 
capacity was compared to the calculated using each of the specifications. Cores were 
taken from the girder to test for compressive strength and modulus of elasticity (Pei et 
al. 2008). 

 
 The research provided a better understanding of the condition of girders in the 
state of Oklahoma similar to the one tested. The girder was found to exceed the current 
demands (Pei et al. 2008). 
 

1.4.7 Ross et al. (2011) 
 This paper summarized the study conducted by Hamilton III et al. (2009). Four 
AASHTO Type III girders were salvaged from a bridge in Florida and tested for shear 
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failure using three point bending. A total of six tests were conducted; two girders were 
tested at both ends and the other two only at one end. The location of loading varied for 
each test. Neoprene pads were used at the support to allow for rotation and to prevent 
torsion. LVDTs were placed at the load point to measure deflection, at the end of the 
strands to measure strand slip and at the supports to measure the compression of the 
neoprene pads. Strain gauges and strain rosettes were placed at discrete locations 
along the beam to measure the strain in the girder. The experimental results were 
compared to current specifications and specifications at the time the girder was cast – 
AASHTO (1973), AASHTO LRFD (2007) and ACI (2008) (Ross et al. 2011). 
 

The results showed that the girders being thirty years old did not compromise 
their integrity. The specifications produced conservative values compared to the 
experimental results. However, predicted failure modes did not always match the 
experimentally observed failure modes (Ross et al. 2011). 

 

1.4.8 Osborn et al. (2012) 
 This paper described the master’s thesis from Parry Osborn (Osborn, 2010). This 
study examined eight AASHTO Type II girders taken from a bridge in Utah that was in 
service for forty-two years. Some ends where retrofitted with carbon fiber reinforced 
polymer while others were left in the original condition (Osborn 2010). The goals in this 
study were to determine a way to retrofit existing girders in service to prevent them from 
needing to be replaced (Osborn et al., 2012). 
 

Several flexural tests were performed to determine the prestress force loss due 
to the years of service of the girders. Cracking moment tests were performed to 
determine the cracking load and prestress losses. To determine the prestress loss, 
cracking moment tests were performed, and strain gauges were used to determine what 
load cause the bottom fiber to have a zero stress. Shear tests were conducted to 
determine the shear capacity. The shear test setup included varying spans with the load 
point 4 feet from the end of the girder. The spans ranged because each girder was 
tested on both ends and the researchers did not want damage from the first test to 
affect the second test. The experimental capacities were compared to AASHTO (2009) 
and ACI (2008) specifications. The results showed that the capacities determined using 
the specifications were conservative compared to the experimental values (Osborn et 
al. 2012). 
 

1.5 Shear Strength Calculation Methods 

1.5.1 AASHTO Standard Specifications (1973) 
The AASHTO shear philosophy has evolved considerably since the 1970’s. At 

that time, the governing bridge code was the AASHTO Standard Specifications for 
Highway Bridges (from here on referred to as AASHTO-STD). This code used a load 
factor design (LFD) philosophy for concrete. One concern regarding bridge girders 
designed at this time is the location of the critical section for shear. The code at this time 
recommended investigating shear only in the middle half of the span. The reasoning 
was that the critical section for shear would be at a location where shear and flexural 
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forces interact. At locations closer to the support than the “quarter-point” the shear 
demand was to be taken the same as at the quarter-point. It is possible that higher 
shear demands at the ends could lead to a lack of conservativism for these older 
designs.  
 

Nominal shear strength is determined in AASHTO-STD in a similar fashion to 
ACI 318 (2014) (described in Section 1.4.3); by summing the contributions of the steel 
and the concrete. The shear resistance in AASHTO-STD in 1973 is given by Eq. (1.1) 
(AASHTO 1973). 
 

 𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 = 0.06𝑓′𝑐𝑏
′𝑗𝑑 +

2𝐴𝑣𝑓𝑠𝑦𝑗𝑑

𝑠
  (1.1) 

where: 
 
b’  =  width of web (in.) 
j  =  ratio of distance between centroid of compression and centroid of 

tension and total depth 
fsy  =  tensile capacity of shear reinforcement (psi) 
s = spacing of shear reinforcement at section (in.) 

 
This procedure is quite similar to the ACI (2014) method, although it is more 

simplistic with regards to the contribution of concrete to shear strength. As for the steel 
contribution to shear strength, the “2” in the numerator of the second term in Eq. (1.1) 
would correspond to a crack angle of 26.6 degrees, as opposed to 45 degrees in the 
ACI code. A smaller crack angle makes sense because prestress forces are known to 
flatten stress trajectories in girders (Wight and MacGregor 2012), however if the actual 
crack angle is greater than 26.6 degrees the steel capacity will be overestimated. A 
minimum shear steel requirement is given by Eq. (1.2). 
 

 𝐴𝑣 ≥
100𝑏′𝑠

𝑓𝑠𝑦
  (1.2) 

 
There is no upper limit on shear reinforcement in AASHTO-STD. However, the 

concrete contribution to shear strength is constrained by an upper limit on compressive 
strength of 3000 psi. A positive result of this requirement is that most girders designed 
at this time required a larger amount of shear steel, despite the demand being taken 
further into the section. This conservativism with regards to concrete strength could 
improve the ductility of girders loaded in shear from this time period. 
 

1.5.2 AASHTO LRFD Specifications  
The AASHTO bridge code has changed considerably overall since the 1970’s. 

The current code now uses a probabilistic Load and Resistance Factor Design (LRFD) 
design philosophy (AASHTO 2012). For the rest of this report, the LRFD code (2012 
version) will be referred to as AASHTO-LRFD. AASHTO-LRFD began using a new 
shear design methodology in 1994 known as the “sectional design model” based on 
Modified Compression Field Theory (MCFT) (Collins et al. 1996; Vecchio and Collins 
1986; Hawkins et al. 2005). This method was rather complex and was not preferred by 
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designers as it required an iterative solution. This procedure was simplified in 2008 and 
there are now multiple options to calculate concrete shear capacity in the 2012 
AASHTO-LRFD. The AASHTO-LRFD “simplified procedure” is similar to the ACI 
method (section 1.5.3) because it divides a member into sections controlled by flexure-
shear and web-shear (Hawkins et al. 2005). Shear resistance is taken as the sum of the 
concrete shear strength, steel contribution to shear strength, and a term to account for 
the influence of prestress force on shear strength. Concrete contribution to shear 
strength is taken as the lesser of the resistance when cracking is caused by combined 
shear and moment or the resistance when cracking occurs in the web due to shear only 
(Eqs. 1.3-1.5). 
 
 𝑉𝑐 = 𝑙𝑒𝑠𝑠𝑒𝑟 𝑜𝑓 𝑉𝑐𝑖, 𝑉𝑐𝑤  (1.3) 
 

 𝑉𝑐𝑖 = 0.02√𝑓′𝑐𝑏𝑣𝑑𝑣 + 𝑉𝑑 +
𝑉𝑖𝑀𝑐𝑟𝑒

𝑀𝑚𝑎𝑥
≥ 0.06√𝑓′𝑐𝑏𝑣𝑑𝑣 (1.4) 

 

 𝑉𝑐𝑤 = (0.06√𝑓′𝑐 + 0.30𝑓𝑝𝑐)𝑏𝑣𝑑𝑣 + 𝑉𝑝  (1.5) 

where: 
 
bv  =  effective web width taken as the minimum web width within dv (in.) 
dv  =  effective shear depth taken as the distance between the resultant 

tensile and compressive forces due to flexure (in.) 
 

The general method provided by AASHTO-LRFD is based on MCFT. MCFT 
assumes that a series of shear cracks will form in the web of a member, creating a 
network of diagonal concrete shear struts (in compression) and vertical steel stirrups (in 
tension) that work together to carry the total shear demand. Each concrete strut also 
carries some tension and the sum of the tension in all the struts is the concrete’s 
contribution to the shear strength. In order to find shear resistance by MCFT, the factors 
β and θ must be determined. The factor β describes the ability of the concrete to 
transmit tension and shear and θ is the crack angle (or angle of diagonal compressive 
stress). In the original MCFT procedure, a series of tables were used to relate strains to 
β and θ. In the current AASHTO-LRFD “general method” there are two equations used 
to estimate these factors, the β calculation is shown in Eqs. 1.6-1.8. 
 
 If Av ≥ Minimum Av,  (1.6) 
 

 𝛽 =
4.8

(1+750 𝑠)
 (1.7) 

else, 

 𝛽 =
4.8

(1+750 𝑠)

51

(39+𝑠𝑥𝑒)
 (1.8) 

 
where: 
 
εs  =  net longitudinal tensile strain at the centroid of the tension 

reinforcement 
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sxe  = a spacing factor given in the code 
 

 The crack angle, θ, can be found by the relationship in Eq. (1.9). 
 
 휃 = 29 + 3500휀𝑠  (1.9) 
 

This new procedure based on equations instead of tables was developed by 
Bentz et al. (2006) in 2006 to simplify the MCFT procedure. If the minimum amount of 
shear steel is not provided, the equation for β assumes no transverse reinforcement. 
These simplified calculations should be conservative for almost all combinations of β 
and θ as compared to the original tabular method. Today, the tables are maintained in 
AASHTO-LRFD as an appendix and are still allowed for design. The concrete 
contribution to shear strength is then given as a function of β by Eq. (1.10).  
 

 𝑉𝑐 = 0.0316𝛽√𝑓′𝑐𝑏𝑣𝑑𝑣  (1.10) 

 
Finally, the steel contribution in AASHTO-LRFD is generally a function of the 

crack angle, rebar spacing, section depth, stirrup angle, area, and yield strength of the 
reinforcement. This relationship is given in Eq. (1.11). 
 

 𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣(𝑐𝑜𝑡 +𝑐𝑜𝑡𝛼)𝑠𝑖𝑛𝛼

𝑠
  (1.11) 

where: 
 
α  =  angle of inclination of transverse reinforcement 

 
MCFT was introduced as a comprehensive, rational method for analyzing 

concrete members subjected to shear. Despite its more complicated nature, it should 
provide more accurate results than the ACI method and the AASHTO-STD method. It is 
hard to say definitively what effect older codes have on the conservativism of older 
designs because there are many variables involved in terms of demand and capacity. 
Because of the complex nature of these problems it is important to have experimental 
data from old girders for comparison to design codes.  
 

1.5.3 ACI Shear Provisions 
Early research at the University of Illinois found that transverse reinforcement 

restrains shear cracking and improves ductility after web cracks form (MacGregor et al. 
1965). These findings led to equations for the shear capacity of concrete and minimum 
shear reinforcement (MacGregor and Hanson 1969). The shear methodology in the ACI 
Building Code Requirements for Structural Concrete (ACI 2014) was developed based 
on this early work and the equations remain largely unchanged. The ACI treatment of 
shear in prestressed concrete is given in Chapters 9 and 22 of the 2014 code and 
involves a separate calculation for the contribution of the steel and the concrete to the 
shear resistance (ACI 2014). The nominal shear capacity of a section is given by Eq. 
(1.12). 
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 𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠  (1.12) 
  

where: 
 
Vn  =  nominal shear capacity (lb) 
Vc  =  concrete contribution to shear strength (lb) 
Vs  =  steel contribution to shear strength (lb) 
 

For prestressed concrete members, the ACI code offers two methods to calculate 
shear capacity of the concrete: a simplified method and a more complex method that 
takes into account different cracking behavior and failure mechanisms. The complex 
method provides an equation for web-shear cracking and flexure-shear cracking to find 
the controlling type of cracking at a given section. For this research, the minimum of the 
capacity given by the two methods was chosen. The simplified method is given in Eq. 
(1.13) and Eq. (1.14). 
 

 𝑉𝑐 = (0.6𝜆√𝑓′𝑐 + 700
𝑉𝑢𝑑𝑝

𝑀𝑢
)𝑏𝑤𝑑  (1.13) 

 
where: 

 2𝜆√𝑓′𝑐𝑏𝑤𝑑 ≤ 𝑉𝑐 ≤ 5 𝜆√𝑓′𝑐𝑏𝑤𝑑 (1.14) 

 
and: 
 
λ  =  modification factor for lightweight aggregate; 1.0 for normal weight 
f’c  =  specified compressive strength of concrete (psi) 
Vu  =  factored applied shear at section (lb) 
dp  =  depth to centroid of prestress force from extreme compression 

fiber (in.) 
Mu  =  factored moment at section (in.-lb)  
bw  =  width of web (in.) 
d  =  distance from extreme compression fiber to centroid of tensile 

reinforcement (in.) 
 
For the more complex method in ACI, the concrete contribution related to flexure-shear 
capacity is given by Eqs. (1.15-1.18). 
 

 𝑉𝑐𝑖 = 0.6𝜆√𝑓′𝑐𝑏𝑤𝑑𝑝 + 𝑉𝑑 +
𝑉𝑖𝑀𝑐𝑟𝑒

𝑀𝑚𝑎𝑥
  (1.15) 

 
where: 

 𝑑𝑝 ≥ 0.8ℎ (1.16) 

 

 𝑀𝑐𝑟𝑒 = (
𝐼

𝑦𝑡
) (6𝜆√𝑓′𝑐 + 𝑓𝑝𝑒 − 𝑓𝑑) (1.17) 

 

 𝑉𝑐𝑖 ≥ 1.7𝜆√𝑓′𝑐𝑏𝑤𝑑 (1.18) 
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and: 
Vci  =  nominal shear strength provided by concrete when diagonal 

cracking results from combined shear and moment (lb) 
Vd  =  shear force at section due to unfactored dead load (lb) 
Vi  =  factored shear force at section due to externally applied loads 

associated with Mmax (lb) 
Mcre =  moment causing flexural cracking at section due to external loads 

(in.-lb) 
Mmax = maximum factored moment due to external loads (in.-lb) 
yt  =  distance from centroid of gross section to tension face (in.) 
I  =  moment of inertia of cross-section (in4) 
fpe  =  stress in concrete due to effective prestress force at tension face 

(psi) 
fd  =  stress due to unfactored dead load at tension face (psi) 
 

The nominal shear force required to cause web-shear cracking is given by Eqs. (1.19) 
and Eq. (1.20).    
 

 𝑉𝑐𝑤 = (3.5𝜆√𝑓′𝑐 + 0.3𝑓𝑝𝑐)𝑏𝑤𝑑𝑝 + 𝑉𝑝   (1.19) 

 
where: 
 

 𝑑𝑝 ≥ 0.8ℎ (1.20) 

 
and: 
 
Vcw  =  nominal shear strength provided by concrete when diagonal 

cracking results from high principal tensile stress in web (lb) 
fpc  =  compressive stress in concrete after losses at centroid of the 

section resisting external loads or at the junction of the web and 
the flange when the centroid is within the flange (psi) 

Vp  =  vertical component of effective prestress force at section (psi) 
 

The shear strength supplied by the transverse reinforcement is given by Eq. 
(1.21). For vertical shear stirrups, the ACI code assumes a crack angle of 45 degrees. 
This approach likely overestimates the angle of shear cracking for prestressed beams 
but will give a conservative value for the steel contribution to shear strength.  
 

 𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑠
  (1.21) 

where: 
 
Av  =  area of shear reinforcement within spacing, s (in2) 
fyt  =  yield strength of transverse reinforcement (psi) 
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The ACI methodology has not changed since the 1970’s. ACI also allows the use 
of a strut-and-tie model for analysis and design in discontinuity regions of concrete 
beams. 

 

1.5.4 Strut and Tie Models 
Another option allowed by both ACI and AASHTO-LRFD is the strut-and-tie 

model (STM). At regions near discontinuities (e.g. loads, supports, cross section 
changes); St. Venant’s Principle is no longer an accurate assumption (Nilson et al. 
2005). These D-regions can be defined as sections of the beam within a distance equal 
to the member depth from the discontinuity. At these locations, Bernoulli beam theory 
does not provide accurate results for the shear capacity because the strain distribution 
is not linear. The STM was developed in the late 1800’s to solve these types of 
problems (Schlaich et al. 1987). STM creates a truss analogy where diagonally cracked 
concrete forms compressive “struts,” and the longitudinal and transverse reinforcement 
form tension “ties.” The strength of the individual struts and ties are then compared to 
the force demands calculated using the truss model. The STM does not provide a 
unique solution like the sectional methods, but will give a lower bound shear strength. 
STM has been used to verify details in concrete members but can be difficult to apply 
(Hawkins et al. 2005). 
 

1.5.5 Bond-Shear Models 
Ross and Naji (2013) describe a method for calculating the bond-shear capacity 

of a prestressed concrete member. These procedures are similar to the AASHTO 
5.8.3.5 provisions for longitudinal reinforcement in end regions with modifications to 
account for bond failure. Bond-shear failures are initiated by the formation of cracks in 
the end region that reduce the available development length. When the available 
development is reduced, the precompression in the ends is also reduced, lowering the 
shear capacity. This model allows the calculation of the shear force required to initiate 
this type of failure. The method was verified experimentally for a/d ratios of 1.0 to 4.4. 
The method is based on moment equilibrium about the top of a shear crack including 
the forces in the bottom strands, harped strands, shear steel, and reaction force at the 
support. The full procedure is well laid out in Ross and Naji (2013), so this report will 
only detail how certain values were obtained. Figure 1.1 is taken from Ross and Naji 
(2013) and shows the free body diagram used for this method.  

 

1.6 Summary 
 Previous research reviewed from the literature focused on the prestress losses 
and shear capacity of prestressed girders in comparison to the values determined using 
the AASHTO specifications after the girders were replaced due to age. Some research, 
such as Osborn et al. (2012), was focused on determining ways to adequately repair 
girders determined to be unfit for service. The research described in this report was 
focused on providing information that can be used to prevent girders with adequate 
strength from being rated deficient or replaced only because they are aged or designed 
using past versions of the AASHTO specifications. Table 1.1 summarizes previous 
studies for comparison to the results presented in this report. 
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Figure 1.1: General free body diagram (taken from Ross and Naji, 2013) 

 
The study described in this report is different from Shenoy and Frantz (1991), 

Pessiki et al. (1996), and Ross et al. (2011) in that it focused on the evaluation of 
AASHTO Type II girders. Shenoy and Frantz focused on how corrosion affected the 
shear and moment capacities along with prestress losses of the beams. The beams in 
Shenoy and Frantz were tested at midspan to cause a failure in flexural rather than 
shear. This study focused on shear behavior and effect of aging on material properties. 
Pessiki et al. (1996) studied the capacities and prestress losses of in service I-beams. 
The study found the failure mode to be crushing of the concrete in the top flange. The 
beams were loaded at midspan and had a high height to width ratio which is considered 
to be a slender beam. This study examined girders with a much smaller height to width 
ratio and loading closer to the end, both of which affect the shear capacity of the girder. 
Ross et al. (2011) had similar goals and test setup to the current study, and the results 
of those shear tests showed different failure modes from failure modes predicted by 
analysis.  
 

Shahawy et al. (1993), Pei et al. (2008), and Osborn et al. (2012) examined 
AASHTO Type II girders similar to those from the current study. Shahawy et al. used a 
similar test setup as the current study. The goal of Shahawy et al. was to determine if 
the revisions to the AASHTO Specifications were better at predicting shear capacity. 
The girders tested by Shahawy et al. were designed to the AASHTO 1989 
Specifications, were constructed specifically for research, and were never in service. 
 

The work performed by Pei et al. (2008) has several differences from the 
research described, which was intended to expand on the previous work. The girders in 
the research described in this report were taken from the eastbound bridge at the same 
location and should be subject to similar loads and climate conditions as the girder 
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Table 1.1: Summary of Studies Reviewed in the Literature 

Author Summary of Research 

Shenoy and 
Frantz (1991) 

• 2 post-tensioned box girders 

• Removed from service 

• Tested for prestress losses and corrosion 

• Used inverse analysis to determine deflection and 
load 

• Third-point load configuration 

• Material properties were unknown 

Shahawy et al. 
(1993) 

• 33 Type II AASHTO girder 

• Cast for research 

• Shear tested at both ends 

• Compared to AASHTO specification 

• Provide AASHTO with recommendations for revisions 

Pessiki et al. 
(1996) 

• 2 prestressed I-beams 

• Removed from service 

• Cracking moment tests 

• Elastic flexural tests 

• Effective prestress calculated using cracking load and 
elastic flexural tests 

• Unable to fail beams in shear due to compression in 
the deck 

• Cores taken for material properties 

Pei et al. 
 (2008) 

• Previous study in which current study is an extension 

• One type II AASHTO girder 

• Removed from service 

• Flexural tests 

• Shear tests and cracking moment tests 

• Cores taken for material properties 

• Capacities compared to AASHTO LRFD (2004), ACI 
(2008), and AASHTO (1973) 

Ross et al.  
(2011) 

• 4 type III AASHTO girders 

• Removed from service 

• shear tested: 2 on both end, 2 on only one end 

• Three-point tests 

• Supported on neoprene pads 

• LVDTs placed on strands to measure end slip 

• Compared to AASHTO (1973), AASHTO (2007), and 
ACI (2008) 

Osborn et al. 
(2012) 

• 8 type II AASHTO girders 

• Removed from service 

• Cracking moment and shear tests 

• Compared to AASHTO (2009) and ACI (2008) 
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examined in the previous study. The current girders were tested with the section of deck 
directly over the top flange in place and ends in reasonable condition. The girder was 
loaded within a region of the beam accurately described by beam theory as opposed to 
in the discontinuity region examined by Pei et al. (2008). The girders used in the current 
study had different numbers of prestressing strands but the same shear reinforcement 
as the Pei et al. (2008) girder. The research results described in this report add to the 
findings from the previous study. 

2. Shear Tests of Aged AASHTO Girders 

2.1 Introduction 
Two girders taken from the I-244 bridge over the Arkansas river in Tulsa, 

Oklahoma, were tested as part of this program. The first, girder “A,” was a 32-ft-long 
AASHTO Type II girder prestressed with six straight ½ in. strands and four harped 
strands. This girder had been cut from the full bridge in a way that left a section of the 
8.5 in. thick deck of a roughly equal width to the top flange intact. The second girder is 
labeled as girder “C” in this study, and it was taken from a different span of the same 
bridge. Girder C was a 46-ft-long AASHTO Type II girder prestressed with ten straight 
strands and six harped strands. It was delivered with a roughly 36 in. wide portion of 
deck. The deck was not cut symmetrically about the center of the girder however, so an 
additional 10 in. of deck was cast on the short side to regain section symmetry using a 
concrete mixture designed to match the strength of cores taken from the deck of Girder 
A. Girder C also had partial diaphragms remaining at the center and the ends. Both 
girders were reinforced for shear with double No. 4 Z bars spaced at 4 in. for the first 12 
in. of the beam from each end, 8 in. until 30% of the length from each end, and 12 in. for 
the interior 40% of the beam. Figure 2.1 and Figure 2.2 show the cross sections of the 
girders and the sections including the deck, respectively. The deck of both girders 
included a 2 in. concrete wearing overlay. This overlay tended to control the ability of 
the deck to carry compression forces. 

 
In order to build on the work of Martin et al. (2011), the a/d ratios for this study 

were continued from the starting point of 1.0. Girder A was tested once on each end, at 
a/d ratios of 2.5 and 2.0. Girder C was tested at a/d ratios of 3.0 and 3.83 (the “quarter-
point”). The girders were supported at one end and at a location that left the opposite 
end overhanging such that it would not be damaged by or influence the test of the 
opposite end. Neoprene bearing pads were used to match field conditions. A single 
point load was applied through a steel plate using a hydraulic actuator.  

 

2.2 Transport of Girders to Fears Lab 
The two girders were selected from the I-244 Eastbound bridge over the 

Arkansas River in Tulsa during a visit to the site in the spring of 2013 before demolition 
began on the bridge. These two specific girders were chosen as representative of two of 
the four reinforcement configurations used for the AASHTO Type II girders in different 
spans of the bridge. The locations of the chosen girders within the bridge are shown in 
Figure 2.3, and the typical bridge cross-section at these locations is shown in Figure 
2.4. Girder A was cut from the bridge with the deck intact out to the edges of the top 
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flange, girder C was cut from the deck such that a 3 ft width of the deck and diaphragms 
transverse to the girder were removed with the beam. It was intended that this deck 
would be symmetric about the girder axis, but the actual cut was not. The removal of 
girder C from the bridge is shown in Figure 2.5. 

 

 
Figure 2.1:  Two typical girder cross-sections, “A”, and “C”, selected from the I-244 
bridge over the Arkansas River in Tulsa, OK with 10 1/2 in. strands and 16 1/2 in. 

strands, respectively, (top) shows original drawings provided by ODOT at midspan, 
(bottom) shows end and middle details of the girders (2” grid shown by dashed lines) 
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Figure 2.2: Details of remaining deck on girders A (left) and C (right) 

Figure 2.3:  Location of beams A and C within the bridge section (extracted from the 
drawings provided by ODOT) 

 

Figure 2.4: Whole section of the bridge section where girders A and C were taken 
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Figure 2.5: Removal of girder C from the I-244 bridge over the Arkansas river in 

Tulsa, OK on September 4, 2013 (photo courtesy of Gary Quinonez with Manhattan 

Road & Bridge) 

 
The two girders were delivered to Fears Structural Engineering Laboratory on 

October 18, 2013 on flatbed trailers, as shown in Figure 2.6, and were unloaded using 
two 20 ton cranes rented from Allied Steel Construction, as shown in Figures 2.7 and 
2.8. The beams were placed on wooden supports in the yard of Fears Lab and were 
stabilized with timber bracing. Several views of each girder are shown in Figures 2.9 
and 2.10. 
 

 
Figure 2.6: Arrival of girders at Fears Lab on flatbed trailers on October 8, 2013 

 
The two girders were stored in the yard until space related to other projects 

was cleared inside Fears Lab. The girders were moved into Fears Lab on July 29, 2014 
using 15 ton and 10 ton capacity forklifts rented from Allied Steel Construction. The 
transportation of the girders into Fears Lab can be seen in Figures 2.11 and 2.12. 
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Figure 2.7: Unloading of girder A using 20 ton rental cranes on October 8, 2013 

 

 
Figure 2.8: Unloading of girder C using 20 ton rental cranes on October 8, 2013 

 

 
Figure 2.9: Two views of girder A showing details of condition on October 8, 2013 

 

 
Figure 2.10: Two views of girder C showing details of condition on October 8, 2013 

 
 
 



22 
 

 

 

Figure 2.11: Transportation of girder A into Fears Lab on July 29, 2014 
 

(a) (b) 

Figure 2.12: (a) Placement of girder A into the load frame at Fears Lab, and (b) girder C 
into its storage position within the lab 

 

2.3 Preparation for Testing  

2.3.1 Girder “A” 
A number of tasks were performed before testing girder A in shear was possible. 

These included analysis of the girder section, which is discussed in Chapter 3, 
preparation of a detailed instrumentation and testing plan, configuration and testing of 
all instruments and data acquisition equipment, preparation of the girder and test setup, 
and inverse testing to determine girder material properties, which is discussed in 
Chapter 6.  

 
2.3.1.1 Instrumentation and testing plan 

An initial review of previous large girder shear testing was conducted to develop 
ideas for the shear testing setup and instrumentation plan. The primary testing plan for 
girder A consisted of the following steps: 
 

1. initial inverse testing of girder A involving measurement of camber and a series 
of elastic flexural tests used to estimate girder material and sectional properties, 
 

2. dynamic tests of Girder “A” using a modal hammer, and 
 

3. shear testing of both ends of the girder. 
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The estimated material and sectional properties were used in calculations for 
strength of the girder in the proposed testing configurations. The details of the inverse 
testing are included in Section 6.1. The shear test locations were chosen based on the 
location of the quarter-span point, and on the a/d ratio for the particular loading 
configuration. Values of 2.0 and 2.5 were selected for the a/d ratios in order to create 
maximum shear stresses within a section of the girder where beam behavior controls, or 
B-region. This is defined by St. Venant’s principle as a region located more than a 
distance equal to the section depth away from a load or geometric discontinuity. 
Support conditions were chosen based on several discussions among the PI and co-PI 
informed by input from Mr. Walt Peters. Elastomeric bearing pads with a 1 in. thickness 
placed on top of reinforced concrete blocks were chosen for use as support conditions 
in order to recreate the real-world support conditions as indicated on the plans provided 
by ODOT. Instrumentation was chosen such as to collect the data required to accurately 
describe the behavior of the girder under load and is described in Section 2.4. 

 
2.3.1.2 Data acquisition testing and instrumentation calibration 

The data acquisition system was entirely built out of this project and consisted of 
a National Instruments (NI) CompactDAQ 8-slot USB chassis, an NI 9205 analog input 
module, and an NI 9219 universal analog input module. The central chassis and the 
modules were connected together through a board of universal connectors. Specific 
data acquisition .vi files were written in LabVIEW for each of the test setups. An 
additional file was written for the specific purpose of calibrating the instruments. 
Extensive testing was conducted on the DAQ system to eliminate electrical shorts and 
other issues.  
 

Appropriate foil strain gauges could not be obtained for use in testing girder A 
due to issues with the manufacturer and a review of other strain gauge types was 
conducted to determine the best fit for capturing crack initiation. All instruments were 
calibrated in the configuration used for each of the tests immediately before the tests 
were conducted. The instruments were calibrated using a specific calibration .vi file to 
read voltage response from the instruments and known standards for comparison. The 
load cells were calibrated using the Fears Lab Baldwin Universal Testing machine that 
is externally calibrated once each year. All LVDTs were calibrated using a micrometer 
and the wire potentiometers were calibrated using a standard steel rule. A number of 
points were collected for each instrument and a calibration factor was calculated using a 
linear least squares fit to the data. Each of the .vi files was tested with the specific 
instruments attached. 

 
2.3.1.3 Girder preparation 

The remaining end diaphragms were removed from the ends of girder A using a 
sledge hammer and a variety of chisels while stored in the yard of Fears Structural 
Engineering Lab. Immediately after the beams were brought into Fears Lab, girder A 
was painted white and a 3 in. reference grid was drawn along the length of the member. 
The calculated beam centerline was used as the zero base point for the reference grid. 
Numbered vertical grid lines were placed every foot along the length of the girder to 
create a unified numbering system. The grid continued to approximately ±15 ft in each 
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direction. The ends of girder A were skewed during construction to align with the skew 
of the girder span. Accurate information could not be obtained concerning the 
orientation of the transverse steel located near the girder ends, the locations of which 
were critical for development of the plan for inverse testing to determine EI. Mr. Matt 
Romero of the Oklahoma Department of Transportation brought a team from the 
Materials Division to Fears Lab and used a Hilti PS 1000 ground penetrating radar 
system to locate the transverse reinforcement and harping points for the prestressing 
strands, shown in Figure 2.13. These locations were marked on the girder surface in 
green as part of the grid system. The finished grid system is shown in Figure 2.13. Each 
proposed load point was prepared for load application by placing Hydro-Stone gypsum 
cement to remove any surface irregularities and create a smooth surface for load 
application. 
 

 
(a) (b) 

Figure 2.13: (a) Mr. Matt Romero using ground penetrating radar to locate transverse 
reinforcing bars in girder A, and (b) finished reference grid showing transverse steel 

locations for girder A 
 

2.3.2 Girder “C” 
Preparation for testing girder C was very similar to that for testing girder A. These 

preparations included analysis of the girder section, which is discussed in Chapter 3, 
preparation of a detailed instrumentation and testing plan, configuration and testing of 
all instruments and data acquisition equipment, and preparation of the girder and test 
setup. 
 
2.3.2.1 Instrumentation and testing plan 

The information obtained during testing of girder A was used to develop the 
shear testing setup and instrumentation plan for girder C. The primary testing plan for 
girder C consisted only of shear testing each end of the girder. No inverse testing was 
conducted on girder C. 

 
The estimated material and sectional properties were used in calculations for 

strength of the girder in the proposed testing configurations. The shear test locations 
were chosen based on the location of the quarter-span point, and on the a/d ratio for the 
particular loading configuration. Values of 3.0 and 3.83 were selected for the a/d ratios 
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in order to create maximum shear stresses within a B-region of the girder and to 
increase the number of data points beyond those obtained for girder A. Support 
conditions were the same as used for girder A. Instrumentation was chosen such as to 
collect the data required to accurately describe the behavior of the girder under load 
and is described in Section 2.4. 
 
2.3.2.2 Data acquisition testing and instrumentation calibration 

Additional strain gauge channels were added to the data acquisition system in 
the form of two NI 9236 strain gauge modules. Appropriate foil gauges were ordered 
well in advance of shear testing to accommodate the 24-26 week lead time on the 
instruments. Mr. Murray developed new data acquisition programs in LabView 
specifically for the shear tests on girder C in order to handle the added channels. All 
instruments were calibrated in the same way as for girder A. 

 
2.3.2.3 Girder preparation 

The girder was first painted white to facilitate observation of cracks during testing 
and a vertical reference grid was drawn at 1 ft intervals for use in identifying crack 
locations (see Figure 2.14). The grid was based and numbered using the same 
procedure as for girder A described in Section 2.3.1. This grid was later detailed to 
every six inches vertically and horizontally in the areas of the load points. The girder 
was moved into position in Fears Lab using HilmanTM rollers placed at each end and 
hand winches attached the Fears Lab strong floor as shown in Figure 2.14. Lifting seats 
were constructed to ensure stability of the non-symmetric section. 
 

 

 

(a) (b) 

Figure 2.14: (a) Moving of girder C and (b) the gridlines on girder C 

Girder C was removed from the bridge with the intention of obtaining a 36 in. 
wide section of the bridge deck symmetric about the girder web. The deck section as-
received was not symmetric and 10 in. of concrete was added to the deck to create a 
symmetric section after the girder was in place in the testing frame. Reinforcing bars 
matching the original reinforcement configuration and sufficient to transfer the expected 
compression forces across the joint were doweled into the existing deck using epoxy. 
Preparation for casting the deck extension is shown in Figure 2.15. A concrete mixture 
designed to match the strength of deck cores taken from girder A was used to cast the 
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extension. Continuity was maintained by embedding No. 4 reinforcing bars in the 
existing deck section using structural epoxy to the depths specified by the epoxy 
manufacturer. The spacing was selected based on the spacing of steel in the bridge 
deck and on interface shear forces using AASHTO 5.8.4 (2012). The concrete face was 
roughened with a jackhammer to improve the bond between the old and new deck 
concrete and meet the roughened surface requirements described in AASHTO 5.8.4.3 
(2012).   
 

Figure 2.15: Construction of deck extension of girder C in progress 

A composite mechanism representing the effects of adjacent girders desired for 
testing girder C was evaluated during preparation for testing. It was determined that 
space limitations in Fears Lab prevented construction of a complete deck and adjacent 
girder arrangement, so an equivalent mechanism consisting of beam and column 
sections anchored to the strong floor was considered. This mechanism was designed 
using a STAAD.Pro model to compare single girder and composite section behavior in 
order to match stiffness at a given load using the beam and column arrangement in 
place of the full bridge section. The reliability of results from this method were heavily 
debated and the decision was made to test girder C without a composite mechanism 
and to focus more heavily on using the scaled bridge section, described in Chapter 7, to 
examine load transfer between girders. 
 

2.4 Shear Test Procedures 

2.4.1 Girder “A” 
A total of three shear tests were conducted on girder A. For all tests the girder 

was supported on a two 8 in. x 18 in. x 1 in. thick neoprene bearings resting on 
reinforced concrete blocks. The support at the end being tested was located with the 
neoprene bearing flush with the end of the member and skewed to match the beam 
end. The far support was located at grid location +4 ft or -4 ft for the first and second 
test, respectively. The supports for test 3 were located at grid locations ±4 ft. The first 
two shear tests consisted of an approximately 19 ft span and a single point load applied 
at the desired test location. Test A1 was loaded at grid location +7.25 ft, providing a 
span to depth ratio of 2.5. Test A2 was loaded at grid location -8.75 ft, providing a span 
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to depth ratio of 2.0. The final test (A3) had a span of 8 ft with the load positioned at grid 
location 0.0, providing a span to depth ratio of 1.33. 
 

Load, deflection, displacement of the bearing pads, strain at discrete points, and 
strand end slip were monitored using the various instruments and the NI data 
acquisition system throughout each test at a sampling rate of 200 Hz. Figure 2.16 
shows the testing configuration for shear tests A1 and A2 and Figure 2.17 shows the 
arrangement of the individual instruments. Applied load was monitored using a 400 kip 
capacity Interface model 1252 load cell. Deflection was monitored with two wire 
potentiometers at the load point to account for any torsion during the test. For test A1 
one wire potentiometer was also located between the load point and each support. 
Tests A2 and A3 included only the two wire potentiometers at the load point, and 
deflection was monitored manually for these two tests using a laser level and a scale 
attached to the beam web as shown in Figure 2.18. Deflection caused by deformation of 
the bearing pads was measured using two LVDTs at each support attached to the 
bottom beam flange using brackets as shown in Figure 2.17. 

 

 

 

Figure 2.16: Overview of test setup for (top) shear test A1, and (bottom) shear test A2 
 

(a) (b) (c) 

Figure 2.17: (a) Load application point and 400 kip load cell, (b) wire potentiometers 
used for monitoring deflection and setup used to protect them from debris, and (c) 

LVDTs and brackets used for monitoring strand slip and support deflection 
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(a) (b) 

Figure 2.18: (a) Laser level used for manual deflection measurement at the load point, 
and scale attached the girder web used for tracking deflection 

 
End slip was monitored for 8 strands during shear tests A1 and A2. The LVDTs 

were placed on brackets with the plunger of the LVDT touching the exposed strand 
such that any displacement of the strand was recorded by a corresponding extension of 
the LVDT. Placement of the LVDTs is shown in Figure 2.17 and the arrangement of 
LVDTs for each test is shown in Figure 2.19. Strand slip was not monitored for the third 
shear test due to it being located on the central section of the member where end slip 
was not an issue. 
 

Strain was monitored at points of interest using Bridge Diagnostics, Inc. (BDI) 
ST-350 dynamic strain transducers, shown in Figure 2.20. The surface was first 
prepared using a grinder to remove paint and any other deleterious substances and the 
gauges were attached at the desired locations using steel tabs and epoxy. The 
locations of the strain gauges were chosen such as to provide the most useful 
information on cracking of the girder during the shear tests. Channel limitations for the 
test A1 required that only a single strain gauge rosette could be used, which was placed 
at +9.5 on the grid and 10 in. above the bottom flange. The reorganization of wire pots 
for test A2 allowed for placement of strain gauges at the base of the bottom flange of 
both sides of the girder at the load point (- 8.75) in addition to a rosette at grid location -
11.5 and 6 in. above the bottom flange. The rosettes were intended to capture the 
behavior of the girder related to flexure shear and web shear cracking and the gauges 
at the load point were intended to capture flexure cracking information. 
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Figure 2.19: Arrangement of strand slip monitoring LVDTs for (a) test A1 and (b) test A2  
 

 
Figure 2.20: (a) BDI strain gauges at the load point for shear test 2, and (b) the strain 

rosette used for shear test 1 
 

Load was applied for each test in 5 kip increments with a pause between 
increments to inspect the test setup and look for potential cracks. Once the first crack 
was observed, cracks were traced with red permanent marker and marked with the load 
at which they were observed, as shown in Figure 2.21. Once the beam reached the 
estimated failure load, or showed signs of eminent failure, cracks were no longer 
marked after each increment. Videos and pictures were taken to document significant 
moments during all shear tests, the records of which were used for detailed analysis of 
failure mechanism in conjunction with automatically recorded time histories of all data 
measurement instrumentation. 
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(a) (b) 

Figure 2.21: (a) Graduate research assistants marking cracks between load increments, 
and (b) cracking pattern for test A1 with cracks marked in red 

 

2.4.2 Girder “C” 
Girder C was tested at both ends similarly to what was done for girder A. Span to 

depth ratios of 3.0 and 3.83 were tested to continue the trend of moving outward from 
the support. An overview of the testing configurations for girder C is shown in Figure 
2.22. Girder C was instrumented more heavily than girder A in order to gather more 
information about the shear behavior. Figure 2.23 shows the instrumentation plan for 
test C1. LVDTs were used to measure strand slip in eight of the ten straight strands in 
the girder (Figure 2.24). As in previous testing, wire potentiometers were used to 
measure under-load deflection and four LVDTs were used to account for deflection of 
the bearing pads. Five BDI strain gauges (labeled “Bridge Gauges” in Figure 2.23) were 
attached to the top and bottom flanges of the beam to monitor strain distribution in the 
section under the load. Additionally, fifteen foil type strain gauges (labeled “short” and 
“long” strain gauges in Figure 2.23) were attached to the concrete at strategic locations. 
Four of these gauges were placed on top of the deck width to observe the influence of 
the deck width on the load distribution. Six were arranged on the web of the girder at an 
angle perpendicular to expected shear cracks in order to catch shear cracks as they 
formed and to observe the strain in the web before the formation of these cracks. The 
rest were arranged in a similar fashion to the BDI gauges. Unfortunately, several of 
these gauges were damaged during installation. The foil gauges are very delicate, and it 
is not unusual for there to be attrition before data is collected.  
 

Figure 2.22: Overview of test setup for (top) shear test C1, and (bottom) shear test C2 
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Figure 2.23: Instrumentation for both sides of girder C for test C1  

 
 

 
Figure 2.24: Arrangement of LVDTs at the beam end 

 
In order to achieve the required shear span to depth ratio for test C1, a 25 ft span 

was selected. This span was chosen in order to reduce the damage caused to the other 
end of the beam during the first test. The load was applied at 9 ft from the south end 
(grid location 14.5 ft) of the beam to obtain an a/d of 3.0 (9 ft / 3 ft = 3.0). Figure 2.25 
shows an overview of the test setup. The support conditions and load application were 
similar to those used for the shear tests of girder A described in Section 2.4.1. 
 

 
Figure 2.25: Test C1 setup 
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Since previous testing was performed quite close to the support, the second 
shear test of girder C (C2) was performed at the “quarter-point.” At the time these 
girders were designed, the critical section for shear was taken at one quarter of the 
length of the girder. For this girder that corresponds to 11.5 feet into the girder from the 
end (grid location 11.5 ft) for an a/d ratio of about 3.8. The span for this test was 28 feet 
(3 feet longer than for shear test one) in order to increase the shear demand on the 
tested end. At this location, the shear and moment capacities were expected to be very 
similar and a flexural failure was anticipated. 
 

The setup for test C2 was very similar test C1 in terms of instrumentation. The 
same set up of LVDTs, wire pots, and BDI strain gauges was used. The locations of the 
foil strain gauges used for this test were altered slightly. Since the strain gauges on the 
underside of the deck did not attach properly during test one, these were moved to the 
web so there were eight total strain gauges arrayed on the web during test C2. Figure 
2.26 shows the instrumentation plan for this test with the exception of the LVDTs and 
strain gauges atop the deck. The arrangement of LVDTs was the same as shown in 
Figure 2.24. 
 

 

 
Figure 2.26: Instrumentation for girder C for test C2  

 

2.5 Shear Testing Results 

2.5.1 Testing Girder “A”: Results 
2.5.1.1 Test A1 

The first shear test of girder A (A1) was performed at an a/d of 2.5 and a span 
length of 18.75 ft. Initial cracking occurred at a load of 170 kips directly under the load 
point. The first shear crack was a web shear crack 4.5 ft away from the load towards the 
near support and occurred at a load of 225 kips. As the load was increased, several 
shear cracks began to enter the bottom flange. At a load of 255 kips, the bottom four 
strands slipped, leading to a loss of load carrying capacity. Slip was measured for six of 
the strands before failure, possibly influenced by corrosion (Figure 2.27) present at the 
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girder end. According to discussions with ODOT engineers, similar corrosion is 
frequently observed in Oklahoma bridges. Load was increased to 260 kips, at which 
point the deck overlay delaminated. The maximum load resulted in an applied moment 
of approximately 1162 k-ft and applied shear of approximately 155 kips, including dead 
load. The cracking pattern for this test is shown in Figure 2.28. Initial flexure cracking 
occurred in the immediate vicinity of the load point. Flexure-shear and web shear cracks 
occurred between the load point and near support as shown in Figure 2.28. The failure 
mode for test A1 can be characterized as “bond-shear” because strand slip reduced the 
capacity of the section and ultimately led to failure. The strand slip reduced the available 
prestress force and contributed to the shear cracking and shear failure mechanism. A 
picture of the failure is given in Figure 2.29. The deflection measurements for test A1 
were lost due to a malfunction of the wire potentiometers. 

 

 
Figure 2.27: Corroded ends of strands that exhibited initial strand slip during test A1 

 

 
Figure 2.28: Shear test A1 cracking pattern (3 in. grid shown) 

 

 
Figure 2.29: Cracking and failure patterns for shear test A1 at failure inclined shear 
cracks are identified using a black arrow and crushing of the deck concrete at the 

extreme compression fiber is highlighted with a black circle 
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2.5.1.2 Test A2 
The second shear test of girder A (A2) was performed at an a/d of 2.0 and a 

span length of 19 ft. Initial cracking occurred directly under the load point at a load of 
190 kips, corresponding applied moment of approximately 797 k-ft, and applied shear of 
approximately 128 kips. The first shear crack was observed at a load of 225 kips in the 
web and the bottom flange roughly 1 ft away from the support. Load was increased to 
an ultimate value of 289.5 kips, corresponding to an applied moment of 1197 k-ft and 
applied shear of 193 kips, at which point there was a sudden failure corresponding to 
delamination of the deck overlay and rupture of multiple prestressing strands. The 
strands ruptured approximately 1 ft away from the load point in the direction of the 
longer side of the span. The cracking pattern is shown in Figure 2.30 and failure photos 
are given in Figures 2.31 and 2.32.  
 

 
Figure 2.30: Shear test A2 cracking; strand rupture occurred at the 8 ft mark (3 in. grid 

shown) 
 

 
Figure 2.31: Test A2 failure, note deck crushing at the top of the image and the large 

flexural crack at the bottom where strand failure occurred 
 

The average load versus deflection for the two wire potentiometers placed at the 
load point for test A2 are shown in Figure 2.33. The point of visually observed first 
cracking is shown with an open square, the point of slope change indicating cracking is 
shown with an open circle, and the point of first shear cracking is shown with an open 
diamond. This plot indicates a period of constant load and yielding at maximum load 
which is indicative of a flexural failure (marked with an “x”. This failure type was 
confirmed by crushing of the extreme compression fiber and fracture of at least two of 
the bottom layer prestressing strands. 

 
The final shear test exhibited only web shear cracks, and could not be loaded to 

complete failure due to the limiting capacity of the load frame, which is 400 kips. 
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Diagonal cracking (Figure 2.34) was observed between the supports and the load point 
indicating a stress distribution characteristic of a section of the girder where beam 
behavior does not dominate, or D-region. This region is defined by St. Venant’s principle 
as a section within a distance equal to the depth of the section from a load or geometric 
discontinuity. 

Figure 2.32: Cracking pattern for test A2 between the load point and near support 
 

Figure 2.33: Load deflection plot for test A2 truncated at the failure point based on an 
average of the two wire pots 
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Figure 2.34: Cracking pattern for shear test A3 

 

2.5.2 Testing Girder “C”: Results 
2.5.2.1 Test C1 

The first shear test of girder C (C1) was performed at an a/d of 3.0 with a span 
length of 25 ft. The test was performed on October 16, 2015 at Fears Lab; testing began 
around 10:50am. Once the data acquisition software was initialized, load was applied in 
10 kip increments and the researchers present for the test monitored the girder for any 
signs of cracking. At an applied load of 90 kips, spalling was observed at the end 
nearest the load point. There was corrosion of the strands at that end similar to that 
described for girder A, which corrosion had initiated several cracks, particularly on the 
outer strands. The level of corrosion on this end is typical based on site visits to girders 
from this time period. The bearing force caused the pre-existing cracks at this end to 
open and for pieces to spall off of the bottom flange (Figure 2.35). At this point the test 
had to be stopped so the LVDTs on the strands at that end could be repositioned. The 
LVDTs monitoring strand slip and bearing deflection were mounted to the sides of the 
bottom flange on this end of the girder, so spalling caused these instruments to move 
and no longer provide accurate readings. The spalling behavior ceased at a load of 110 
kips, so it appears there were no bearing issues outside of the initial spalling.  

 
When the test was resumed the load continued to be increased at 10 kip 

increments after the discovery of the spalling until web-shear cracks were observed at a 
load of 160 kips at the web-top flange interface (Figure 2.36). At this point, load 
increments were decreased to 5 kips. From here on, web shear cracking was observed 
at every load increment, and either these cracks grew or new ones appeared at every 
step (Figure 2.37). The initial web shear cracks extended the full height of the web at a 
roughly 26 degree angle, beginning 2 ft away from the support. The location of these 
cracks and the fact that they were recognized before any cracks under the load point 
formed indicate that shear was the controlling load case at this point. 

 



37 
 

 

 

 

 

Figure 2.35: Spalling under load initiated by cracking caused by corrosion  

Figure 2.36: Initial shear cracking for test C1 

 
Figure 2.37: Test C1 failure, note large shear cracks and failure of the bottom flange 

concrete 
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Flexural cracking under the load was observed at 185 kips and at a load of 195 
kips some shear cracks began to enter the bottom flange of the girder. A data 
acquisition error caused this test to be halted at 195 kips before continuing the load to 
failure. The load was removed, and the error fixed, at which point loading was 
continued. This also provided an opportunity to re-position the LVDT’s that had been 
shifted by the spalling concrete. After fixing the data acquisition error, load was returned 
to 195 kips at the same increments as before. Between load steps the girder was 
observed to verify that no new cracks formed. As expected, until the load returned to 
195 kips, the forces were redistributed internally the same way as in the first test. As 
load increased beyond 195 kips, several shear cracks began to align themselves with 
the strands in the bottom flange, indicative of a possible bond-shear issue (Figure 2.38). 

 
Once the load was returned to 195 kips, the shear cracks turned downward into 

the bottom flanges across the bottom of the beam. Flexure cracks also continued to 
extend up towards the deck. As loading continued, shear cracks formed at an even 
spacing and on either side of the load point (Figure 2.39). At 265 kips, some of the 
shear cracks in the bottom flange extended horizontally, along the same height as the 
prestressing strands. This sort of cracking could indicate bond-shear issues. Once the 
load surpassed 300 kips, more plastic behavior was observed and the girder became 
unable to sustain additional load. At this point the hydraulic ram ran out of travel, and 
the test was delayed to insert an additional spacer before the maximum load was 
applied. 

 

 
Figure 2.38: Shear cracking at 250 kips (arrow indicates cracks aligning with strands) 
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Figure 2.39: Test C1 cracking (6 in. grid shown) 

 
After a spacer was added, the load was applied without interruption from 0 kips 

to the maximum load of 318 kips. The final stages of loading were characterized by 
increased deflection compared to load (loss of stiffness) and by growth of the shear 
cracks at the level of the prestressing strands. Ultimately, failure occurred when these 
shear cracks caused strand slip, and the deck concrete crushed. As observed in the 
shear tests of girder A, the weak link in the deck concrete is the overlaid wearing 
surface. In each case, once the neutral axis of the member reached this overlay, the 
ability of the deck concrete to sustain any more load was lost (Figure 2.40). The overall 
cracking pattern for test C1 is shown in Figure 2.39 and photos of the failure are given 
in Figure 2.40. 

 

 
Figure 2.40: Final condition of Girder “C”: (a) shows overall condition, (b) shows 

crushed deck concrete, (c) shows exposed strands under bottom flange, and (d) shows 
strand slip of about one inch and corrosion 
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Figure 2.41 shows a load-displacement curve for the girder from the second and 
third rounds of this test. This figure shows the behavior of the girder from 0 kips up to 
the point when no more load could be applied. There are four points highlighted on the 
curves, the points of initial flexure and shear cracking and the maximum loads for each 
iteration of the test. Plastic deformation at the end of the tests would be related to initial 
crack growth and moment-shear cracking from the final stages of the test, respectively. 
The flexural and shear capacities calculated for the girder are also shown as horizontal 
lines labelled with the particular method. 

 
Figure 2.41: Load-displacement curve (C1b) 

 
Figure 2.42 presents the results from strain gauges atop the deck alongside the 

load during the third iteration of the test. Strain gauge 2 is roughly one foot away from 
the center of the girder and 3 and 4 are located 20 inches from the center on either side. 
The purpose of these gauges was to measure the distribution of load in the slab. As one 
would expect, the strain is larger close to the load and smaller towards the edge of the 
slab. From this figure, it is clear that load was distributed into the slab extension and 
that the deck concrete received a large portion of compression strain even towards the 
edges. 
 

Finally, Figure 2.43 shows the loss of bond in multiple strands on the bottom row. 
Measurements for the LVDTs on strands 5, 7, and 10 as described in Figure 2.24 are 
shown in Figure 2.43. These strands had the largest bond loss and are provided as 
representative of the overall beam behavior. LVDTs on strands 6 and 8 measured 
smaller slip values and strand 12 exhibited approximately zero slip. Shear cracks 
extended into the transfer length of these strands and when these cracks were wide 
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enough the strands lost anchorage completely, leading to the failure. This can be seen 
in Figure 2.43, as the four strands lost bond near the failure load. 

 

 
Figure 2.42: Strain gauges from deck 

 

 
Figure 2.43: Strand slip at failure for test C1 
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2.5.2.2 Test C2 
The test was performed on November 20, 2015 at Fears lab, beginning in the 

late morning. The data acquisition system was initialized and load was applied in 10 kip 
increments until initial cracking was observed. Between load increments the girder was 
inspected for cracking and any cracks were marked before applying more load. The 
second test of girder C (C2) was performed at an a/d of 3.83, corresponding to a quarter 
of the original span length. In the 1973 AASHTO-STD this point would have been taken 
as the critical section for shear. However, this far into the span moment is expected to 
control the failure. The test span was increased to 28 ft to increase the shear demand 
on the short side of the span.  

 
The first observed cracks were web-shear cracks approximately 2 ft from the 

supports (Figure 2.44) at a load of 150 kips followed by flexural cracking at 160 kips. 
The first cracks were several web shear cracks near the support and near the web-top 
flange interface. At this point load increments were decreased to 5 kips for the rest of 
the testing. The shear and flexural cracking increased in size and number until the end 
of the test. Flexural cracks extended to the top flange at a load of around 160 kips and 
reached the deck at around 190 kips. At 195 kips, web shear cracks began to grow into 
the bottom flange becoming flexure-shear cracks. As load increased some of these 
cracks oriented themselves more horizontally along the height of the strands. An 
overview of the cracking from test C2 is shown in Figure 2.45. Load was increased up to 
301 kips at which point a leak in the hydraulic actuator used to apply load caused the 
test to be halted. Load was removed from the girder until the hydraulic system could be 
topped up with fluid. After this, the load was applied until ultimate failure occurred at a 
load of 297 kips. As in previous tests, the girder failed when the forces in the deck 
overlay were too large, causing the overlay to delaminate and crush. The compressive 
forces during this test were so large that the top flange crushed and compression steel 
in the top flange and the deck buckled (Figures 2.46 and 2.47). This failure type could 
be described as compression-shear or a flexural failure. Compression-shear is caused 
by shear cracks entering the compression flange (Ross et al. 2011). 

 

 
Figure 2.44: Initial cracking in test C2 
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Figure 2.45: Overall cracking for test C2 

 

 
Figure 2.46: Test C2 failure, showing a large shear crack in the center of the image that 

entered the top flange causing catastrophic compression failure 
 

 
Figure 2.47: Buckled steel and failure along plane of wearing surface 
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Figure 2.48: Buckled compression steel in girder 

 
The load deflection curves for both tests are shown in Figure 2.49. There was an 

issue with the wire potentiometers that occurred at around 230 kips, so manual 
measurements are shown in lieu of the potentiometer data past this point. There was 
good agreement between the potentiometers and the manual deflection measurements 
up to this point. In Figure 2.49 there is a clear change in slope that occurs after the 
initial cracking corresponding to a decrease in stiffness due to the cracks. After cracks 
formed there was an increase in deflection of 3.75 in. and an abundance of additional 
cracks. This type of behavior is ductile and provides plenty of warning before failure.  

 
Figure 2.50 shows the strand slip data from the bottom six strands of the girder. 

Unfortunately, the apparatus that was used to hold the strands in position shifted, 
causing the LVDTs to extend. Because of this, it is hard to quantitatively describe the 
slip in the strands during the test. It is, however, possible to determine which strands 
slipped and when. LVDT 10 appears to show slip at the time of initial cracking. This 
LVDT corresponds to the center-left strand. As the load surpassed 200 kips, all other 
strands on the bottom row appear to slip at some point. Again, the magnitude of slip is 
hard to determine, but it is at least 0.03 inches. It is unlikely this slip significantly 
affected the moment capacity of the section, especially given that the compression steel 
buckled.  
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Figure 2.49: Load vs. deflection for test C2 

 

 
Figure 2.50: Slip for bottom row of strands 
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2.5.3 Summary of All Shear Tests 
A summary of all shear tests is shown in Table 2.1. 
Table 2.1: Summary of Shear Test Results for Girders A and C 
Property/Result A1 A2  C1 C2 

a/d 2.5 2.0 3.0 3.83 
Span (ft) 18.75 19.0 25.0 28.0 
Pcr (kips) 170 190 160 150 
Vcr (kip-ft) 101 127 102 88 
Mcr (kip-ft) 760 790 922 1017 
Pmax (kips) 260 290 318 301 
Vmax (kips) 159 180 204 179 
Mmax (kip-ft) 1162 1197 1832 2040 

Failure Mode Bond-Shear 
Flexural 

(strand rupture) 
Bond-Shear 

Compression-
Shear 

 

2.6 Material Properties 

2.6.1 Overview 
Cores were taken from both girder A and girder C for compression testing and 

modulus of elasticity testing. Twelve 3 in. cores were taken from the web of girder A 
resulting in 3 in. x 6 in. cores. The core locations were selected based on providing a 
representative sample of the concrete in the shear region of each test and a distribution 
of concrete compressive strength throughout the depth near the mid-section of the 
girder and at one end. Some core locations are shown in Figure 2.51. Two cores 
approximately 2 in. in diameter were taken from the deck at grid locations -3.5 and -0.5 
ft. Seven 4.25 in. cores were taken from the central section of the beam for testing 
elastic modulus. Six 3.75 in. diameter cores were taken from the web of girder C for 
compressive strength and modulus of elasticity testing and three cores were taken from 
the deck of girder C for compression testing. Two samples each of prestressing strand 
and mild steel were taken from girder A for tensile strength and modulus of elasticity 
testing. 
 

 
Figure 2.51: Photo showing girder A section after coring was completed 

 

2.6.2 Concrete Properties 
Six 3 in. diameter cores taken at different locations along girder A were tested for 

compressive strength. The specimen IDs are descriptive of the location of the core. The 
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first letter (N or S) is whether it is north or south of the center of the girder. The number 
is the grid location in feet from the center line. The final letter (T, M or B) is when 
multiple cores were taken from the girder at the same location where the ID stands for 
top, middle and bottom of the web section of the girder.   

 
The results of the compressive strength tests for the cores taken from the web of 

girder A are presented in Table 2.2. The average compressive strength for the cores 
was 6270 psi. Using the ACI 214.4 (2003) specification factor of 1.05, the equivalent 
compressive strength of the girder is 6570 psi. The measured compressive strength is 
close to the predicted compressive strength of 6000 psi. There was not a significant 
difference in compressive strength along the length of the girder. 

 
Table 2.2: Compressive strength of 3 in. diameter cores from the web of girder A 

Specimen ID Load (lb) Compressive Strength (psi) 

N4.00T 45680 6460 
N4.00M 46920 6630 
N1.25T 40700 5760 
N1.25M 47130 6660 
S9.75T 42605 6020 

S10.25B 43235 6110 

 
Modulus of elasticity of the concrete was determined using seven cores 

approximately 4.25 in. in diameter. The modulus of elasticity for each core was based 
on the second and third loading cycles is provided in Table 2.3. The average modulus of 
elasticity of the girder concrete was 4750 ksi. The estimated modulus of elasticity was 
4420 ksi based on the ACI equations using the compressive strength. The predicted 
modulus of elasticity is less than the measured modulus of elasticity which makes the 
preliminary calculations a conservative estimate. The modulus of elasticity did not show 
a significant difference along the length of the girder. 

 
Two cores approximately 2 in. in diameter were taken from the deck at grid 

locations -3.5 and -0.5 ft. Each core was cut into three equal sections and tested for 
compressive strength. Table 2.4 documents the compressive strength from the cores. 

 
Table 2.3: Modulus of elasticity of 4.25 in. cores taken from the web of girder A 

Specimen ID 

Modulus of 
Elasticity-Cycle 2 

(ksi) 

Modulus of 
Elasticity-Cycle 3 

(ksi) 

Modulus of 
Elasticity 

(ksi) 

N0.50 4947 5042 4995 
S0.50 4966 5109 5038 
S3.00 4525 4542 4534 

S3.75T 4420 4431 4426 
S3.75B 4831 4916 4874 
S4.50T 4696 4795 4746 
S4.50B 4615 4623 4619 
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Table 2.4: Compressive strength of 2 in. diameter cores from the deck of girder A 
Specimen ID Load (lb) Compressive Strength (psi) 

S3.5a 31160 7830 
S3.5b 27455 6900 
S3.5c 30390 7640 
S0.5a 27900 7010 
S0.5b 27805 6990 
S0.5c 27325 6870 

 
The average compressive strength of the deck concrete cores at -3.5 ft was 7730 

psi. Specimen b was ignored due to mild steel in the sample causing an inaccurate 
measurement of the core’s concrete compressive strength. The average compressive 
strength of the concrete cores at -0.5 ft was 6960 psi. The average compressive 
strength of all 5 cores (excluding Specimen S3.5b) was 7270 psi. The modification by 
ACI 214.4 (2003) factor of 1.08 gives a compressive strength for the deck of 7840 psi. 
The deck concrete does not consist of only concrete from the original pour. The 
resurfaced concrete most likely had a different design mixture and strength. The 
measured compressive strength is much higher than the assumed value of 6000 psi. 
The compressive strength for deck and girder were originally assumed to be the same. 
The specifications for girder concrete are typically higher than for deck concrete, so it 
was unexpected for the deck to have a higher compressive strength. However, the 
specified compressive strength for the girders on the plans provided by ODOT was only 
5000 psi compared to the typically specified 4000 psi for deck concrete. Greater 
compressive strengths for the deck are much less likely with modern construction, as 
girder concrete is often specified at compressive strengths of up to 10,000 psi. The 
concrete from the deck and girder were not cast at the same time and could explain the 
difference in the compressive strength. 

 
 The compressive strength of the cores taken from the web and deck of girder C 
are presented in Table 2.5. The average compressive strength of the cores taken from 
the girder web was 6900 psi and the average compressive strength for the cores taken 
from the deck was 5840 psi. 
 
Table 2.5: Compressive strength cores from girder C 

Girder Section Specimen ID Load (lb) Compressive Strength (psi) 

Web 

W1 85850 7830 

W2 73195 6920 

W3 72780 6430 

Deck 

D1 71925 6340 

D2 74760 6550 

D3 52850 4640 

 

2.6.3 Steel Properties 
Two prestressing strand samples taken from girder A between grid locations -

0.75 and -2.25 feet were tested for tensile strength and modulus of elasticity. Table 2.6 
provides the modulus of elasticity and ultimate strength of each strand. The average 
modulus of elasticity of the strands was 26350 ksi. The average tensile strength of the  
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Table 2.6: Modulus of elasticity and ultimate strength of prestressing strands 
Specimen ID Modulus of Elasticity (ksi) Ultimate Strength (ksi) 

0.75-2.25West 26600 282.8 
0.75-2.25East 26100 284.3 

 
strands was 283 ksi, confirming that the strands were Grade 270, as specified in the 
plans provided by ODOT. 

 
Two samples of mild steel used for the shear stirrups in girder A were tested for 

yield stress, ultimate strength and modulus of elasticity. Two samples from the steel in 
the diaphragm were also tested for yield stress, ultimate strength and modulus of 
elasticity. The results are shown in Table 2.7. The average yielding strength, modulus of 
elasticity, and ultimate strength for the stirrups are 54.8, 32750, and 87.9 ksi, 
respectively, and for the diaphragm 51.1, 27500, and 84.2 ksi. These values confirm the 
steel to most likely be Grade 40 which was assumed during the preliminary analysis. 
 
Table 2.7: Yield strength, modulus of elasticity and ultimate strength of mild steel 

Property Stirrup 1 Stirrup 2 Diaphragm 1 Diaphragm 2 

Yield Stress (ksi) 54.4 55.2 51.6 50.5 
Modulus of Elasticity (ksi) 29,300 36,200 26,800 28,200 

Ultimate Strength (ksi) 87.4 88.4 85.5 82.8 

 

3. Analysis 

3.0 Nomenclature 
a shear span length  

d structural depth of the cross-section 

 

3.1 Overview 
Detailed drawings of each girder were created using AutoCAD, the drawings 

provided by ODOT, and the actual measurements of the beams. A sample of these 
drawings is shown for girder A in Figure 3.1. A re-creation of the entire bridge cross-
section was also created using typical sections provided by ODOT. These drawings 
were created for the purpose of quick reference in the analysis process. A detailed 
series of Excel spreadsheets was created to analyze a single beam section in terms of 
shear and moment diagrams, section properties from measured dimensions, service 
stresses, prestress losses using the AASHTO LRFD (2007) and ACI 318 (2011) 
methods, nominal moment capacity using strain compatibility and the ACI equation for 
prestressing steel stress, and nominal shear capacity using the AASHTO LRFD and 
ACI methods. These spreadsheets were used to calculate the capacities used for 
selecting load locations for the shear tests and for comparison to the measured values 
for each loading configuration. Similar spreadsheets were also created for other 
methods of shear analysis. 
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Figure 3.1: Example of drawings created for girder A for use in analyses 

Models of the complete bridge cross-section were created for both girder A and 
girder C beam cross-sections using the program LEAP CONSPAN (now called LEAP 
Bridge Concrete). These models were used for determining load distribution between 
girders in the full bridge section based on the AASHTO specifications.  
 

3.2 AASHTO Analyses 
 

Both girder A and girder C were analyzed for shear using the methods of 
AASHTO Standard Specifications (1973); AASHTO LRFD (2007); and ACI 318 (2014) 
at the critical sections described by the various codes and at the sections where the 
girders were loaded during the shear tests. The Excel spreadsheets developed for 
these analyses were used to examine a variety of load cases. The AASHTO refined 
method was used to estimate prestress losses, which were then used to determine the 
effective prestress required for shear calculations. The capacities calculated for girders 
A and C and the values measured during the corresponding shear tests are presented 
in Tables 3.1 to 3.4. The “Estimated” column includes the values calculated using loads 
estimated from the calculated moment capacity, the “Experimental” column includes the 
values calculated using the loads obtained during experimental testing, and the 
“Applied” column includes the values measured during the shear tests. Concrete and 
steel properties measured from the samples taken from girder A were used for all 
capacity calculations. 

 
Table 3.1: Capacities determined using the code methods for the Test A1 configuration 
(a/d = 2.5)  
Capacity Type Estimated Experimental Applied 

Maximum Load, P (kips) 239 260 260 
ACI Shear Capacity (kips) 179 179 

159 AASHTO (2004) Shear Capacity (kips) 157 155 
AASHTO (2012) Shear Capacity (kips) 98.1 97.8 
Shear Angle AASHTO 2004 (degrees) 37.0 37.3 

39.5 
Shear Angle AASHTO 2012 (degrees) 49.9 50.0 
Strain Compatibility – Moment Capacity (kip-ft) 1056 1070.5 

1162 
ACI Moment Capacity (kip-ft) 836 981.1 
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Table 3.2: Capacities determined using the code methods for the Test A2 configuration 
(a/d = 2.0)  
Capacity Type  Estimated Experimental Applied 

Maximum Load, P (kips) 256 289.5 289.5 
ACI Shear Capacity (kips) 179 179 

180 AASHTO (2004) Shear Capacity (kips) 151 152 
AASHTO (2012) Shear Capacity (kips) 95.4 95.3 
Shear Angle AASHTO 2004 (degrees) 36.8 36.1 

42.8 
Shear Angle AASHTO 2012 (degrees) 50.0 50.0 
Strain Compatibility – Moment Capacity (kip-ft) 1019 1019 

1197 
ACI Moment Capacity (kip-ft) 806 806 

 
Table 3.3: Capacities determined using the code methods for the Test C1 configuration 
(a/d = 3.0)  
Capacity Type Estimated Experimental Applied 

Maximum Load, P (kips) 341 318 301 
ACI Shear Capacity (kips) 135 179 

204 AASHTO (2004) Shear Capacity (kips) 172 172 
AASHTO (2012) Shear Capacity (kips) 108 119 
Shear Angle AASHTO 2004 (degrees) 36.8 36.8 

30.7 
Shear Angle AASHTO 2012 (degrees) 49.8 46.8 
Strain Compatibility – Moment Capacity (kip-ft) 1933 1933 

1832 
ACI Moment Capacity (kip-ft) 1445 1445 

 
Table 3.4: Capacities determined using the code methods for the Test C2 configuration 
(a/d = 3.83)  
Capacity Type Estimated Experimental Applied 

Maximum Load, P (kips) 297 301 301 
ACI Shear Capacity (kips) 185 185 

179 AASHTO (2004) Shear Capacity (kips) 177 177 
AASHTO (2012) Shear Capacity (kips) 117 115 
Shear Angle AASHTO 2004 (degrees) 37.3 37.3 

33.2 
Shear Angle AASHTO 2012 (degrees) 48.2 48.8 
Strain Compatibility – Moment Capacity (kip-ft) 1997 1997 

2040 
ACI Moment Capacity (kip-ft) 1502 1502 

 

3.3 Bond Shear Failure Analysis (Ross and Naji 2013) 
This method was used in the study described in this report for completeness, 

even though every failure cannot be characterized as a bond transfer failure. Slip was 
observed in tests A1 and C1, indicating some bond issues. In test A1, compression 
failure of the deck overlay caused failure, so the bond shear capacity by Ross and Naji 
(2013) was not reached. In test C1, slip was also observed and the failure occurred due 
to crushing in the deck and delamination of the wearing overlay. 

 
Selecting some of the values required for this method is somewhat subjective. 

For each test, a failure crack was chosen from the photos of each failure. This crack 
was chosen based on observations about the mode of failure. In test C1 for example, 
the cracking pattern is given in the top of Figure 3.2. At the bottom of figure one, the red 
line shows the crack chosen for the analysis. This crack extends from the bottom of the 
girder into the deck near the load point. It also intersects the development length of the 
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strands closest to the support. Moments are then taken about the green line in the 
bottom of Figure 3.2. In Figure 3.2, the vertical dashed lines represent the shear steel. 
For analysis, the heavy black dashed lines were assumed as the stirrups contributing to 
shear resistance since the other stirrups crossed were crossed very near where they 
would be hooked. A summary of values calculated based on the bond-shear failure 
mechanism is given in Table 3.5. 

 

 
Figure 3.2: Selection of critical crack for Ross and Naji (2013) using test C1 

 
Table 3.5: Ross and Naji (2013) bond-shear method summary 

Test 
Nominal Bond-

Shear 
Capacity (kips) 

Experimental 
Shear 

Capacity (kips) 

Slip 
observed? 

Error 
(%) 

A1 197.8 159 Y 24.5 

A2 190.2 180.0 N 5.6 

C1 225.8 204 Y 10.7 

C2 278.7 179 N 55.7 

 

3.3.2 Girder “A” 
Some slip was observed during test A1, so it is possible that the bond-shear 

method can be applied. The diagram including shear crack and stirrups used, is given in 
Figure 3.3. The Ross and Naji (2013) method predicts a nominal bond-shear capacity of 
198 kips, compared to an experimental capacity of 159 kips. This represents a 24.5% 
error. A possible source of error is the force contributed by the shear steel. The model 
assumes that this steel has yielded, but it is possible some bars do not contribute this 
much force to the bond-shear resistance. 

 



53 
 

 
 

 

 

Figure 3.3: Critical crack for test A1  

Slip was not measured in test A2, in fact a strand ruptured during this test, 
indicating the girder reached its moment capacity. Surprisingly, the nominal bond-shear 
capacity was only 5.6% different than the experimental capacity (190 kips and 180 kips 
respectively). The crack diagram for A2 is shown in Figure 3.4. 
 

3.3.3 Girder “C” 
Slip was observed during test C1, indicating that the bond-shear model may be 

applicable. The diagram for this test is given in the bottom of Figure 3.2. The nominal 
bond-shear capacity was calculated as 225.8 kips, compared to 204 kips from the shear 
test. This is an error of 10.7%. In this test the bond-shear capacity was predicted quite 
closely. In test C2, no slip was observed, so it is unlikely that a bond-shear method 
would provide an accurate representation of capacity. The critical crack used for 
capacity calculation is shown in Figure 3.5. The nominal bond-shear capacity was 278.7 
kips and the experimental capacity was 179 kips. This is an error of 55.7%. It is worth 
noting that this test was performed at the quarter span point and so it was unlikely that 
any bond issues would occur.  

Figure 3.4: Critical crack for test A2 
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Figure 3.5: Critical crack for test C2  
 

3.4 Strut and Tie Models  
The strut and tie models used to examine the capacity of girder A were based on 

the requirements of ACI 318 (2011) and AASHTO LRFD (2007). The section between 
the applied load and the support was considered as a D-region and the truss layout was 
arranged using the actual crack angles measured during the corresponding shear tests. 
These truss layouts are shown in Figures 3.6 and 3.7 with struts indicated by solid lines 
and ties by dashed lines. Both were relatively complicated arrangements in order to 
account for the effect of the harped strands. The models for both tests predicted the 
failure to be controlled by the capacity of the tension tie in the straight strands at a load 
of 130.4 kips for test A1 and 140.0 kips for test A2. These predicted loads were 
substantially less than the measured values, but in both cases the failure was at least 
partially controlled by tension in the prestressing strands. Strand fracture was observed 
for test A2. 
 

Figure 3.6: Strut and tie model for configuration of shear test A1 
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Figure 3.7: Strut and tie model for configuration of shear test A2 

 

3.5 Comparison of Code Predictions Experimental Values 
Results from the four shear tests were compared to the ACI method (ACI), the 

2012 AASHTO LRFD simplified procedure (2012-SIMP), the 2012 AASHTO LRFD 
general method (2012-GEN), the 1973 AASHTO Standard Specifications (1973-STD) 
and the AASHTO LRFD MCFT tabular method (2004-AASHTO). For this work, Mmax 
was determined based on the expected flexural capacity of the section using strain 
compatibility. Mcre was determined using estimated effective prestress forces and 
including the dead load from the remaining deck. The code versus experimental 
capacities for all tests are shown in Figure 3.8. All expected capacities are nominal; no 
strength reduction factors are included. 
 

In Figure 3.8 there is a general trend that the 2012-GEN and 2004-AASHTO 
methods (both based on MCFT) give conservative estimates of strength for each 
location tested. In the case of the 2012-GEN method, the estimate was conservative by 
a factor (experimental ultimate shear/predicted ultimate shear) of 1.8 to 2.5. The 2004-
AASHTO methodology is slightly less conservative, with factors between 1.10 and 1.47. 
The 2012-GEN was developed as a simplification of the 2004-AASHTO method and it 
was reported by its developers to be more conservative (Bentz et al. 2006). Both of 
these methods also predict a low concrete contribution to shear strength. The concrete 
contribution to shear strength is influenced by the factor β which differs between the 
2004-AASHTO and 2012-GEN methods. In all cases, the 2012-GEN method provided a 
low capacity and predicted a large shear crack angle (~50 degrees), limiting the 
capacity contribution from the stirrups. The equation for the shear crack angle is based 
on the strain at the level of the tension reinforcement; in these cases, the applied 
moment increased the strain, resulting in a reduced capacity. The moment was 
relatively high because the girder had to be supported near the center to facilitate 
testing both ends, increasing the applied moment for a given shear demand. The 2004-
AASHTO method produced a more reasonable prediction of shear crack angles than 
the 2012-GEN method. 
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Figure 3.8: Tested capacities compared to code predictions 

 
The other shear equations were occasionally un-conservative. For test A1, the 

1973-STD, ACI, and 2012-SIMP were all un-conservative, over predicting capacity by 
factors of 1.20, 1.12, and 1.31 respectively. During test A1 there was a loss of bond due 
to shear cracking and possibly due to corrosion. This test can be characterized as a 
bond-shear failure. Based on strain compatibility, the flexural capacity of the section 
should have been reached at an applied load of 239 kips; less than the 260 kip applied 
load at failure. In this case, the capacity of the section was estimated conservatively by 
strain compatibility, even when bond was lost due to shear cracking. One could argue 
that the estimated force to fail the section was conservative based on moment capacity 
determined by strain compatibility, however the shear equations failed to predict a loss 
of bond due to shear cracking, which is potentially un-conservative.  
 

During test A2, prestressing strands near the load point ruptured, indicating a 
flexural failure. The flexural capacity of the section based on strain compatibility was 
exceeded during the test. The extent of shear cracking indicates that the girder 
maintained adequate ductility and load carrying ability during the test. At the failure load, 
all shear capacity calculations were conservative. 
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Test C1 resulted in a bond-shear failure with shear cracks entering the zone of 
prestress transfer and reducing the capacity of the section. The codes were 
conservative with the exception of the 2012-SIMP, which indicated a capacity 11% 
higher than the experimental value. Test C2 on the other hand was performed at the 
quarter-point, the critical location for shear per the 1973 code. In this case, the applied 
load exceeded the flexural capacity as calculated by strain compatibility. The code 
equations were conservative with the exception of the 1973-STD and 2012-SIMP which 
produced predictions 24% and 30% higher than the experimental values, respectively. 
 

Calculated shear capacities were normalized by the actual shear capacity to 
compare the accuracy of the different methods. Not considering test A2, which can be 
characterized as a flexural failure, the normalized capacities were averaged to 
determine how accurate they were in general. The results of this analysis are shown in 
Table 3.6, where a number greater than 1.0 indicates that the code method over-
predicted capacity and a number less than 1.0 indicates a conservative prediction. The 
2012-GEN method is by far the most conservative, followed by the 2004-AASHTO 
method. ACI and 2004-AASHTO provided the most accurate results in this study. The 
1973-STD and 2012-SIMP methods were generally un-conservative for these cases. It 
is important to note that although this report compares observed capacities to predicted 
shear capacities, these failures may not be entirely due to shear, with flexure or bond-
loss contributing to the failure.  
 
Table 3.6: Normalized capacities from each method 

Method 
Average Normalized 

Capacity 
Coefficient of 

Variation 

1973-STD 1.16 9.83% 
ACI 1.01 12.1% 
2012-SIMP 1.24 8.93% 
2012-GEN 0.533 5.01% 
2004-AASHTO 0.857 8.44% 

 
In all of the tests performed for this study, there was a relatively high applied 

moment in relation to the applied shear, as compared to if the full span were tested. 
Because the spans were typically supported near the original girder centerline, higher 
loads were needed to reach the shear capacities of the sections. This changes the 
shear behavior by altering the internal stresses in the section. MCFT accounts for this 
by altering the angle of cracking based on the strain in the section. If these sections 
were loaded in the field, there would be a larger applied shear and smaller moment for a 
given load near the supports. The most concerning load case was test A1 because the 
shear capacity was overestimated by ACI and the 2012-SIMP methods and shear 
cracking caused strand slip in the section. 

 

3.6 Comparison of Demands and Experimental Values 
The design load demands based on AASHTO LRFD (2012) and AASHTO 

Standard Specifications (1973) were determined for girders A and C using the 
commercial program LEAP CONSPAN (now called LEAP Bridge Concrete) produced by 
Bentley. Each of these bridges was modelled in a similar fashion in order to examine 
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the effects of the full bridge on demands and capacity as outlined in the AASHTO 
specifications. The design trucks and load distribution factors for both sets of 
requirements were used to calculate the moment and shear values along the length of 
the span. Figure 3.9 shows the typical layout of the model for each bridge. Analysis was 
performed for girder 2 and girder 4 for both bridge layouts to evaluate the sections with 
the largest shear demands.  

 

 
Figure 3.9: Typical LEAP Bridge Concrete model 

 
Figure 3.10 shows the demand, nominal moment capacity, and experimental 

ultimate moments for the girder 2 location of the bridge model based on the 
configuration for tests A1 and A2. The demands shown are from the strength I and 
service I limit states from AASHTO LRFD and the strength limit state from 1973 
AASHTO. The nominal capacity is greater than the strength level values for the 1973 
AASHTO STD and the 2012 AASHTO LRFD. The experimental moments were also 
larger than the calculated nominal moment capacities at the locations tested. Figure 
3.11 presents the same information except for the girder 4 location, the middle girder of 
the bridge model. Again, the capacity exceeded demand, and the tested moments 
exceeded the calculated nominal moments.  

 

 
Figure 3.10: Girder A moment demand, beam location 2 
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Figure 3.11: Girder A moment demand, beam location 4 

 
Shear demand for the girder A configuration model is given in Figures 3.12 and 

3.13. These figures represent the demand for beam locations 2 and 4, respectively. The 
shear capacities have not been added to these diagrams; LEAP Bridge Concrete does 
not output shear capacity in the same fashion. Again, the experimental capacities 
exceed the demands for every limit state. These comparisons are made in Section 3.5. 
Also, note that the demand placed on the girders during testing also exceeded the 
maximum demand for every limit state for the entire length of the girder.  

 

 
Figure 3.12: Girder A shear demand, beam location 2 
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Figure 3.13: Girder A shear demand, beam location 4 

 
The moment demands for girder C are given in Figures 3.14 and 3.15. The 

demand for each limit state is very similar for both beam locations. As for girder A, the 
experimental capacities exceeded the nominal moment capacities and the demand at 
the tested locations. Figures 3.16 and 3.17 show the shear demand for both beam 
locations for the girder C design. The shear demand was exceeded by the 
experimentally applied shear for the AASHTO LRFD and AASHTO STD.  

 

 
Figure 3.14: Girder C moment demand, beam location 2 
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Figure 3.15: Girder C moment demand, beam location 4 

 

 
Figure 3.16: Girder C shear demand, beam location 2 

 

 
Figure 3.17: Girder C shear demand, beam location 4 
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4. Analysis of Bond and Transfer Length 

4.0 Nomenclature 
𝐴𝑐 cross-sectional area of concrete  

𝐴𝑠 cross-section area of strand 

𝐴𝑠

𝐴𝑐
 ≜ 𝑝 area ratio  

𝛼 factor that represents the bond stress distribution shape along the transfer 
length (typically between 2 and 3, but values have been estimated by 
several experimental results and theoretical studies) 

b  experimental constant for (Eq. 4.2) assumed to be 0.25 for ½ in. seven-
wire strands.  

𝑑𝑏 strand diameter  

𝛿 strand end slip (in.) 

휀𝑠𝑖 initial strand strain (in./in.)  

𝐸𝑐 Young’s modulus of concrete in linear elastic stage 

𝐸𝑝𝑠 Young’s modulus of strand 

𝐸𝑝𝑠

𝐸𝑐
 ≜ 𝑚 Young’s modulus ratio  

𝑓 stress in strand as in Guyon (1953) 

𝑓𝑏 bond stress 

𝑓𝑠𝑖 initial stress in strand at the moment of release as in Guyon (1953) 

𝑓𝑀 the maximum value of 𝑓, 𝑓𝑀 =
𝑓𝑖

1+𝑚𝑝
 from Guyon (1953) 

𝑓′𝑐 cylindrical compressive strength of concrete in psi  

𝑔(𝑧, 𝑡) the displacement of the strand relative to the concrete along the z-axis  

𝑔0(𝑡) the draw-in value at the free end, i.e., 𝑔(0, 𝑡) 

𝑑𝑔

𝑑𝑧
 longitudinal strain in strand at 𝑡 =  0 as in Guyon (1953) 

𝑘 as in Eq. (4.7)  

𝑙0 the initial length of the post-tensioned prestressed concrete beam as in 
Eq. (4.7) 

𝑙0𝑠 the initial length of the strand in the post-tensioned prestressed concrete 
beam as in Eq. (4.7) 

𝑙𝑡 transfer length (in.) 

𝑃(𝑡) resultant force in strand/concrete  

𝑃𝑖 initial resultant force in strand/concrete at the moment of release, i.e., t = 0 
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𝑃𝑀 the maximum value of 𝑃, 𝑃𝑀 =
𝑃𝑖

1+𝑚𝑝
 

S  free end slip per Eq. 4.3 (in.) 

𝑤𝑐 unit weight of concrete in pcf 

𝑥(𝑡) transfer length 

𝑧 abscissa starting from the free end 

𝑡 time 

휂 concrete viscosity as in Eq. (1) 

𝜆(𝑡) characteristic length for elastic anchorage   

 

4.1 Literature Review of Strand Slip and Transfer Length 
Guyon (1953) proposed an expression for determining transfer length based on 

the amount of strand end-slip during the release of tension in the prestressed strand.  
 

 𝑙𝑡 = 𝛼
𝛿

𝑠𝑖
 (4.1) 

where:  
𝑙𝑡 = transfer length (in.) 
𝛼 = factor that represents the bond stress distribution shape along the 

transfer length (typically between 2 and 3, but values have been 
estimated by several experimental results and theoretical studies) 

𝛿 = strand end slip (in.)  
휀𝑠𝑖 = the initial strain in the strand (in./in.)  

 
Balazs (1993) proposed a modification of Guyon’s formula to consider the shape of the 
strand and its surface pattern to modify the linear bond stress distribution.  
 

 𝑙𝑡 =
2

1−𝑏

𝑆

𝑠𝑖
 (4.2) 

 
where:  
b  = experimental constant assumed to be 0.25 for ½ in. seven-wire 

strands.  
 

This is essentially Eq. (4.1) with a different 𝛼 coefficient, which can take into 
consideration the shape of the bond stress distribution by considering the tendon type 
(wire or strand) and its surface pattern (crimped, indented or deformed). The assumed 

bond stress-slip relationship: 𝑓𝑏 = 𝑐√𝑓′𝑐𝑖𝛿
𝑏 can be used to determine b. If b=1/3 or b 

approaches 0, the values 𝛼 = 3 and 𝛼 = 2 are obtained as proposed by Guyon for linear 
and constant bond stress distributions over the transfer length, respectively. For ½ in. 
seven-wire strands, b=0.25, therefore, 𝛼 = 2.67 (Balazs 1993).  
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Additionally, non-linear relationships for the bond stress distribution were 
considered, so that the transfer length is a function of both the draw-in and initial 
prestress (expressed for ½ in. seven-wire strands). 

 

 𝑙𝑡 =
111𝑆0.625

𝑓′𝑐𝑖
0.15

𝑠𝑖
0.4

 (4.3) 

or 

 𝑙𝑡 =
3.5𝑓𝑠𝑖

√𝑓′𝑐𝑖√𝑆

 (4.4) 

 
where:  
fsi = the compatible initial prestress (psi) 
S  = the free-end slip (in.). 

 
Compared to Eq. (4.1), Eq. (4.3) is a better indicator of draw-in variation and Eq. (4.4) 
estimates the variation of the initial prestress (Balazs 1993).  
 

Marti-Vargas et al. (2007) proposed modifications to Guyon’s formula. They 
proposed expressions using end slip and the 𝛼 factor. 
 

 𝑙𝑡 = 𝛼
𝛿

𝑠𝑖
 (4.5) 

 
where:  
𝑙𝑡  = transfer length (in.) 
𝛿  = strand end slip at the free end of a prestressed concrete member 

(in.) 
휀𝑠𝑖  = initial strand strain (in./in.) 

𝛼  = coefficient representing the shape factor of the bond stress 
distribution along the transfer zone. 

 
Two hypotheses were considered: 𝛼 = 2 for uniform bond stress distribution (linear 
variation in strand stress) and 𝛼 = 3 for linear descending bond stress distribution 
(parabolic variation in strand stress). 
 
Eq. (4.5) can be rewritten as: 

 𝑙𝑡 = 𝛼
𝛿𝐸𝑝

𝑓𝑠𝑖
 (4.6) 

 
where: 
𝐸𝑝  = modulus of elasticity of the prestressing strand 

𝑓𝑠𝑖  = strand stress immediately before prestress release. 
 
The study concluded that the optimal 𝛼 value is 2.44, although considering other 
parameters (i.e. concrete compressive strength) could make the equation more 
accurate (Marti-Vargas et al. 2007). 
 



65 
 

The use of Airy stress function for modeling prestress bond described in Guyon 
(1953) was thoroughly reviewed using both Guyon and other references. This concept 
was found to not be useful in pursuit of the goals of the project described in this report, 
though it may be useful for 3D finite element modeling in future projects. 
 

4.2 Bond Testing 
Summaries of bond testing methods used in previous studies were prepared and 

used to facilitate discussion of the most effective testing methods to use for measuring 
the distribution of strand slip within the transfer length and the strand draw-in time 
history. A method similar to the ECADA test method proposed by Marti-Vargas et al. 
(2006) was selected based on this discussion. 
 

A concrete mix was designed to meet the compressive strength requirements of 
the original girders as well as the composition and fresh properties required by the 
current ODOT specifications for use in construction of the bond test specimens. A 
series of trial batches were made to refine the mix design and achieve the required 
properties. 

 

4.2.1. Background 
The test method ECADA was developed by Marti-Vargas et al. (2006). This 

method uses a steel frame and hydraulic jack to apply the prestress; after which 
concrete specimens can be cast, cured, released, and pulled out. A summary of the 
testing setup and method is presented in Figures 4.1 and 4.2. 
 

 
Figure 4.1: ECADA testing setup (Marti-Vargas et al. 2006 MCR)  

 
The ECADA method measures the force in the strand after tension in the strand 

is released and stabilized. Then a pull-out test is performed by pulling one end of the 
strand until “the slippage or breakage of the reinforcement or failure of the concrete by 
splitting” occurs (Marti-Vargas et al. 2006). The test method proved systematic and 
reliable in testing several parameters to analyze the transfer and anchorage lengths of 
concrete specimens. It was proposed that it could be standardized and used for many 
different specimen lengths. In another study published by Marti-Vargas et al. (2006), the 
ECADA pull-out method was compared with three other methods of determining transfer 
and anchorage lengths, including Guyon’s formula. Several other parameters were 
considered, including compressive strength of the concrete, cement content, 
water/cement ratios, and total embedment lengths. From these studies, the ECADA 
method was again proposed as accurate and possible to standardize for predicting the 
transfer length (Marti-Vargas et al. 2006 PCI).   
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Figure 4.2: ECADA testing phases (Marti-Vargas et al. 2006 MCR) 

 
Marti-Vargas et al. (2007) measured the strand end slip of concrete specimens in 

the ECADA testing setup using linear variable differential transducers (LVDTs). The 
“free end” of the specimen is defined as the side where pretension is released. This side 
of the strand is “free” to slip into the concrete after the tension is released. The 
“anchored end” or “embedded end” of the specimen is defined as the end that backs up 
to the plate in the frame. This end of the specimen mimics the embedment length that 
would be capable of maintaining a bond between the concrete and prestress strand in 
larger concrete specimens. From these tests, a factor value of 𝛼 = 2.44 was proposed. 
They also concluded that the variability in free end slip was not as reliable as anchored 
end slip in predicting the transfer length (Marti-Vargas et al. 2007).  
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4.2.2. Testing Procedures 
4.2.2.1 Overview 

A test setup similar to the ECADA test was designed and fabricated to perform 
comparable bond stress distribution analyses for the transfer lengths of pretensioned 
concrete specimens. All testing was performed at the Donald G. Fears Structural 
Engineering Laboratory at the University of Oklahoma in Norman, Oklahoma. Figure 4.3 
shows the overall setup at Fears Lab showing three frames with concrete specimens 
under prestress.   
 

 
Figure 4.3: Overall bond testing setup 

 
4.2.2.2 Specimen Parameters 

The concrete specimens had a cross section of 4 in. by 4 in. with a concentrically 
located single prestressing strand. Five lengths were considered: 26 in., 30 in., 34 in., 
38 in., and 42 in. in order to bracket the calculated transfer length of 35.1 in. using the 
ACI (2011) equation. All specimens were cast with a single 3.65 ft3 batch of concrete 
and were kept under the same curing conditions. The prestressing strands used were ½ 
in. special, Grade 270 7-wire strands. The strands were surface clean with small 
amounts of rust on them, the same condition in which they were received. Table 4.1 
shows the mix design that was used, Table 4.2 the fresh concrete properties, and Table 
4.3 the strand properties. All strands were tensioned to 75% of their ultimate tensile 
strength or 202.5 ksi to follow typical bond testing procedures. Other values of prestress 
may need to be tested in the future, such as the 188 ksi used for the girders tested in 
this research program, but results of this testing could be extrapolated to other 
situations. 
 

The mix design was developed to meet the Oklahoma Department of 
Transportation (ODOT) standards for bridge girder design (ODOT 2009). Table 4.4 
outlines the specifications for the concrete mixture.  
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Table 4.1: Concrete Mix Design Used for Bond Pullout Tests 
Material Quantity 

Cement (lb/yd3) 900 
Limestone (lb/yd3) 1500 
Sand (lb/yd3) 1205 
Water (lb/yd3) 297 
Water/Cement Ratio 0.33 
Air Entraining Agent (fl oz/cwt) 1.0 
High-Range Water-Reducer (fl oz/cwt) 3.8 

 
Table 4.2: Fresh Properties of Concrete Used for Bond Pullout Tests 
Property Quantity 

Ambient Temperature (°F) 55 
Slump (in.) 8.0 
Mix Temperature (°F) 65 
Unit Weight (lb/ft3) 148.6 
Air Content (%) 5.5 

 
Table 4.3: Properties of Prestressing Strand Used for Bond Pullout Tests 
Property Quantity 

Diameter (in.) 0.52 
Area (in2) 0.1669 
Tensile Strength (ksi) 270 
Elastic Modulus (ksi) 28,600 

 
Table 4.4: Concrete Specifications 
Description Standard Mix Used 

Class of Concrete P P 
Minimum Cement Content (lb/yd3) 564 900 
Air Content (%) 5 ± 1.5 5.5 
Water/Cement Ratio (lb/lb) 0.25-0.44 0.33 
Slump* (in.) 3 ± 1 8.0 

Minimum Compressive Strength at testing (psi) 4000 4150 

*If using a high-range water-reducing admixture, limit the slump to a maximum of 9 in.  
  
4.2.2.3 Testing Equipment  

Steel frames were designed by the research team at OU and fabricated on site. The 
frames mimic the ECADA testing setup by Marti-Vargas and can be seen in Figure 4.4. 
Two 200 kip hydraulic jacks were used to tension and de-tension the strands in the 
arrangement shown in Figures 4.5 and 4.6. 
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Strand 
Chuck 

HSS 
sections 

Figure 4.4: Basic bond testing frame arrangement 

Figure 4.5: Ram assembly attachment 
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Loosened 
Nuts for 
Tensioning 

Chucked Strand 

Strand Chuck 

Figure 4.6: Ram assembly end strand connection 

Formwork was built for the cross sectional dimensions (4 in. by 4 in.) with an end 
spacer to adjust for different specimen lengths. All five specimens were cast 
simultaneously with the same batch of concrete to reduce the variability in the testing. 
The arrangement of the formwork in one of the testing frames is shown in Figures 4.7 
and 4.8. Once the formwork was completed, the testing procedure continued as follows: 

 

Figure 4.7: Free end of testing setup 
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Plastic Tubing 

Figure 4.8: Anchored end of testing setup 

1. Insert specimen formwork in frame and line up using spacers 
2. Cut 0.5 in. special strand to 9 ft and insert through center of plates “A” and “B” on 

both ends of the frame, chucking the strand on the outside of both “B” plates 
3. Include 2 in. plastic tubing around strand on anchored end of specimen as a 

bond breaker. 
4. Place load cell on ram assembly to measure hydraulic ram loading (Figure 4.9) 
5. Add protective barrier above frame for safety precaution during tensioning 

(Figure 4.10) 
 

Plate B 
Plate A 

Strand Chuck 

Load Cell 

Figure 4.9: Ram assembly with load cell 
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Protective Barrier 

Figure 4.10: Testing setup with protective barrier ready for tensioning  

6. Tension strand to 210 kips and hand tighten bolts on the inside of tensioning 
plate “B,” so to hold the tensioned strand in place. This way, when the bolts are 
tightened, the strand will return to roughly 202.5 ksi.  

7. Cast specimens 
a. Perform slump and air content tests according to ASTM C143 and C231 

respectively 
b. Cast cylinders according to ASTM C31 to determine compressive strength  
c. Use vibrator to consolidate concrete 
d. Trowel top of specimens 
e. Cover all specimens with tarp and store in dry, warehouse conditions 

(ambient temperature 55 °F, fresh concrete temperature 65 °F) 
 
A completed specimen is shown in Figure 4.11. 
 

Figure 4.11: Completed casting of bond specimen 



73 
 

4.2.2.4 Instrumentation and Data Collection 
A load cell was used to verify the force applied by one of the hydraulic jacks. Two 

linear variable differential transducers (LVDTs) were used for each specimen to 
measure the strand end slip at both the anchored and free ends of the specimens for a 
total of ten. No internal measuring devices were used in order to leave bond between 
the concrete and the steel strand undisturbed. All instruments were monitored by a 
single data acquisition system throughout testing  
 

The LVDTs were set up using either a wood framework or a magnetic stand 
attached to the load frame so that the LVDT would be just touching a Plexiglas plate 
attached to a steel block clamp placed on the strand at both the free (Figure 4.12) and 
anchored ends (Figure 4.13). All LVDTs were arranged so that they would extend as the 
strand slipped into the specimens, therefore they began at a retracted position within 
their range. 
 

 
Figure 4.12: LVDT setup on free end of specimen 

 

 
Figure 4.13: LVDT setup on anchored end of specimen 
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The procedure for de-tensioning and data collection was as follows: 
1. The LVDTs were set at a sampling rate of 5 Hz during the de-tensioning process 
2. The bolts that held were loosened behind plate “B,” so when the hydraulic rams 

were retracted the plate would move to release the tension in the strand 
3. Once the de-tensioning was completed for all 5 frames, the sampling rate of the 

LVDTs was set at 1 Hz for 24 hours after de-tensioning 
4. Measurements were then taken once a day for the next three days, therefore 

obtaining data for 4 days after de-tensioning 
 

4.2.3. Bond Testing Results 
No visible cracks were seen on the specimens throughout the testing process. 

The parameters considered when plotting the data for the LVDTs were primarily end slip 
versus stress during de-tensioning, end slip versus time, and end slip versus specimen 
length. The “free end” of the specimen is defined as the end where the prestress was 
released. This end of the strand is “free” to slip into the concrete after the tension is 
released. The “anchored end” or “embedded end” of the specimen is defined as the side 
that backs up to the plate in the frame. This end of the specimen mimics the 
embedment length that would be capable of maintaining a bond between the concrete 
and prestressing strand in larger concrete specimens. When using data from the 
LVDTs, both the free end and anchored end slips were considered separately and also 
summed together to see the total slip through the specimen. All data was plotted for 
each frame. The frames correspond to the different specimen lengths given in Table 
4.3. 
 

Plots of free end and embedded end slip versus the stress in the strand were 
completed for each frame and can be seen in Figure 4.14. The positive and negative 
values can be seen as absolute values for the amount of slip into the concrete.  
 

From these plots, a general trend of increased slip as the strand stress 
decreased can be seen. The small jumps in slip, particularly for the free end, could be 
due to the coarseness of the sand and rock in the concrete catching the strand at an 
irregular way or small cracks around the strand opening up to enable the strand to slip 
through. The trend shows a non-smooth relationship between the reduction of stress in 
a strand and its ability to slip into the concrete. The embedded end shows significantly 
less slip, which is due to the bonding between the strand and the concrete throughout 
the specimen length. Table 4.4 shows the highest values for slip during de-tensioning 
for each of the specimens in inches.  
 
Table 4.5: Specimen Lengths for each Frame 

Frame Number Specimen Length (in.) 

1 42 
2 38 
3 34 
4 30 
5 26 
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Figure 4.14: End slip versus stress for each bond pullout specimens 

 
Table 4.6: Maximum Strand End Slip During De-Tensioning  

Specimen Anchored (in.) Free (in.) Total (in.) 

Frame 1 (42 in.) 0.0029 0.1997 0.2026 

Frame 2 (38 in.) 0.0042 0.1434 0.1476 

Frame 3 (34 in.) 0.0013 0.1391 0.1404 

Frame 4 (30 in.) 0.0631 0.1831 0.2462 

Frame 5 (26 in.) 0.0182 0.1829 0.2011 

 
Additionally, Figure 4.15 shows a comparison of the end slip (free, anchored and 

both ends) versus the different specimen lengths during the de-tensioning.  
 

These comparisons show that there was a much higher slip on the free end of 
the specimens compared to the embedded end. The 30 in. specimen showed a higher 
slip than the 26-in. specimen, which could be a discrepancy due to variation in the slip 
measurements for either one or both of these specimen lengths. The general trends of 
the slip measurements, however, can still be observed. For the embedded end, there 
was a significant amount of slip for the shortest two specimens of 26 and 30 in., but 
nearly no slip for the longer three specimens. Therefore, the longer three specimens 
likely were longer than the embedment length required to sufficiently create a bond 
between the prestress strand and the concrete. Additionally, it is likely that the actual 
transfer length for these specimens was between 30 and 34 in. Because only five data 
points were taken for comparison, more specimen lengths would need to be tested to 
create a complete depiction of the embedment length and how it corresponds to slip. 
For the free ends of the specimens, there is an overall similar amount of slip, which 
seems reasonable, for these ends of the specimens are all presumably equally capable 
of slipping into the specimens during release. The smaller specimen lengths, however, 
should have slipped all the way through the specimen because of the lack of complete  
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Figure 4.15: De-tensioning slip versus specimen length 

 
transfer length (and subsequent bonding between the concrete and prestressing 
strand), therefore increasing the free end slip. This trend was not seen as clearly in the 
data.  
 

After the strands were de-tensioned, the rate of measurements was changed to 1 
Hz. These measurements continued for 24 hours and plots of this data for each frame 
can be seen in Figure 4.16 as slip in in. versus time. 

 

 
Figure 4.16: Slip versus time overnight after de-tensioning 
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These plots show that a significant amount of slipping occurs during the first 24 
hours after de-tensioning. The maximum measurement for end slip was taken 24 hours 
after de-tensioning (the maximum value after 1 day), as well as 2 days and 4 days after 
de-tensioning. Table 4.5 shows these end slip values in in. for the free end, anchored 
end, and overall slip for each of the specimen lengths. The maximum end slip (free, 
anchored and both ends) in in. versus the different specimen lengths after 1 day and 4 
days can be seen in Figures 4.17 and 4.18. 

 
In both the 1-day and 4-day plots for the different specimen lengths, a similar 

trend can be seen. Like during the de-tensioning, the embedded end of the specimens 
34 in. and longer have nearly no end slip, reiterating the assumption that the transfer 
length is most likely between 30 and 34 in. Also, like in the de-tensioning data, the free 
end of the specimens show significantly more end slip than the embedded ends, but 
without much of a trend between the different specimen lengths. The free end slip is 
very similar between all of the specimens. 

 
Table 4.7: Maximum end slip measurements for time intervals 

Specimen Time Increment Anchored (in.) Free (in.) Total (in.) 

Frame 1 (42 in.) 

De-tensioning 0.0029 0.1997 0.2026 

1-day 0.0089 0.2279 0.2368 

2-day 0.0091 0.2307 0.2398 

4-day 0.0092 0.2307 0.2399 

Frame 2 (38 in.) 

De-tensioning 0.0042 0.1434 0.1476 

1-day 0.0086 0.1753 0.1839 

2-day 0.0094 0.1768 0.1862 

4-day 0.0091 0.1767 0.1858 

Frame 3 (34 in.) 

De-tensioning 0.0013 0.1391 0.1404 

1-day 0.0052 0.1726 0.1778 

2-day 0.0075 0.178 0.1855 

4-day 0.0074 0.1847 0.1921 

Frame 4 (30 in.) 

De-tensioning 0.0631 0.1831 0.2462 

1-day 0.058 0.2045 0.2625 

2-day 0.0572 0.208 0.2652 

4-day 0.0567 0.2114 0.2681 

Frame 5 (26 in.) 

De-tensioning 0.0182 0.1829 0.2011 

1-day 0.0263 0.2159 0.2422 

2-day 0.027 0.2184 0.2454 

4-day 0.0274 0.2195 0.2469 
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Figure 4.17: Maximum end slip versus specimen length after 1 day 

 

 
Figure 4.18: Maximum end slip versus specimen length after 4 days 

 
Overall, a trend can be seen when comparing the embedded end slip versus 

specimen lengths that generally assumes that the transfer length of these specimens is 
between 30 and 34 in. The previously calculated transfer length from the ACI equation 
of 35.1 in. compares closely with the results of this study, which supports the 
methodology used in this project. While the estimated transfer length is between 30 and 
34 in., inaccuracies in measuring the actual effective stress in the strand could have 
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caused the calculated transfer length to be slightly higher. A calculated transfer length 
of 35.1 inches, however, is not far out of the range of 30-34 in. and an increased 
number of specimen lengths would aid in creating a more accurate depiction of the 
transfer length determined from this study. 

 
The free end slip was not as useful in assessing the transfer length in this study, 

showing no obvious trend between the different specimen lengths. Determining the 
length in which the anchored end slip was insignificant when comparing end slip versus 
specimen lengths was the most valuable comparison in estimating transfer length. 
Including data for the 24 hours after de-tensioning showed an increase in end slip over 
time overall, but not a significant change in end slip for the embedded end.  
 

The testing methods used in this project showed results that are capable of 
providing consistent, useful data. The setup, instrumentation, and testing methods can 
be streamlined as a consistent way to continue testing bond stress in pretensioned 
concrete specimens by using end slip as a function of estimating the transfer length. 
Further tests on different concrete and strand parameters, as well as for different 
specimen lengths is recommended to make further conclusions on a proposed model 
for the bond stress distribution within the transfer length of prestressed concrete 
specimens. 

 

4.5 Prediction of Time-Dependent Bond Transfer in Pretensioned Concrete Using 
Draw-In Data 

4.5.1 Overview 
Time evolution of prestress loss and bond transfer length holds vital information 

concerning long-term performance of pretensioned pretressed concrete. To extract this 
time-varying information, we propose to utilize long-term measurements of strand draw-
in, which could be more effectively obtained than concrete or strand surface strain 
measurements. Theoretical investigations combined with numerical studies of 
experimental data are carried out for this purpose. This study builds on a boundary 
value problem (BVP) model which quantifies draw-in for instantaneous elastic response. 
A one-dimensional linear viscoelastic standard solid model is employed to model the 
creep of concrete, which is a simple but effective model of the time-dependent response 
of pretensioned concrete. Guyon’s BVP model is generalized to include time 
dependence and then combined with an existing initial value problem (IVP) model for 
post-tensioned concrete leading to a new mixed model for time-dependent prestress 
loss and bond transfer in pretensioned concrete. 
 

Analysis was undertaken in this study to (i) quantify long-term prestress loss and 
bond-transfer behaviors by applying the proposed model and directly utilizing measured 
draw-in time history data, (ii) validate the proposed quantitative analysis by using scaled 
pretensioned concrete beams with different types of aggregates and strengths of 
concrete - among others factors, and (iii) offer discussion of future work. For example, 
introducing concrete drying shrinkage into the proposed model seems promising and is 
necessary to provide an improved representation of the time-dependent behavior of 
prestressed concrete. 
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4.5.2 Motivations and technical challenges 
Long-term performance of pretensioned concrete has been an active area as 

large numbers of pretensioned concrete bridge girders were used in construction in the 
fifties and sixties of the last century and have been reported to experience some aging-
related issues. On one hand, prestress loss with time directly concerns the remaining 
load carrying capacity of pretensioned concrete - just as in post-tensioned concrete. On 
the other hand, bond transfer behavior is different for pretensioned concrete, when the 
prestressing force is not fully established within the so-called bond transfer zone, a 
region from a free end up to transfer length of a pretensioned concrete beam where the 
effective prestress increases from zero at the free end to the full effective prestress at 
the end of the transfer length. There are two transfer zones for each strand in a beam, 
one at each end. For example, the section shear capacity contribution provided by the 
effective prestress force within transfer zone is location-dependent, increasing from zero 
at the free end to the full amount at the immediate transfer length. Assessing actual 
shear capacity of pretensioned concrete girders designed according to the quarter-point 
rule specified by previous versions of the AASHTO Bridge Design Specifications 
AASHTO Standard Specifications (1973) and after decades in service motivates us (Pei 
et al. 2008; Martin et al. 2011) to examine whether and how transfer length would 
change with time and consequently, whether and how the section properties would vary 
with time for a more robust long-term performance evaluation of an entire girder. Bond 
transfer, which is vital to pretensioned concrete, needs to be thoroughly and carefully 
considered in both design and analysis because bond transfer directly affects service 
stresses and all section capacities directly associated with prestressing force.  
 

The goal of the study described in this section was to understand and exploit 
time history of draw-in as a means to infer prestress loss and transfer length as 
functions of time. To do so, we need various properties of the concrete and strand, such 
as (perhaps) concrete surface strain time histories. As strand draw-in is a quantity that 
can be more conveniently measured than other quantities (i.e., strand strain, concrete 
surface strain). We contemplate the following questions: 
 

1. Is draw-in a function of time? 
2. Why is draw-in a function of time? 
3. How does draw-in vary in time? 
4. Is transfer length a function of time? 
5. Why is transfer length a function of time? 
6. How does transfer length vary in time? 
7. How does strand force vary in time? 

 
Studying time-dependent behavior of bond-transfer is considered rational 

according to pp. 191 in Guyon (1953) Chapter VII, which reads: “When the wires are 
released from their temporary anchorages the force to be anchored is equal to the total 
tension in the wires at that moment less a certain component due to the instantaneous 
shortening of the concrete. Later the stress in the wires in the body of the beam (i.e., 
outside the anchorage zones) decreases owing to the delayed strains of concrete; the 
magnitude of the force anchored by bond adhesion therefore decreases.” 
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4.5.3 Intended contributions 
In addition to Guyon (1953), a report by Fédération International de la 

Précontrainte (FIP) (1982) is another source for mathematical modeling of bond transfer 
in pretensioned concrete. Other relevant publications include Balázs (1993); Baxi 
(2005); Oh et al. (2006); Ayoub and Filippou (2010); Beńıtz and Gálvez (2011); Geßner 
and Henne (2016). 
 

The first time derivative is necessary to capture the well-established 
phenomenon of concrete creep and to utilize time-dependent draw-in data. Indentations 
on the strand and their period have a large effect on the bond (Benίtz and Gálvez 2011), 
which is known to affect 𝜆 (the characteristic length of elastic anchorage) and, hence, 
draw-in. In this sense, we implicitly treat surface roughness of the strand.  
 

We also intend to demonstrate the power of even a simple linear time-dependent 
model in the process of understanding time-dependent behavior of prestressed 
concrete. Nonetheless, more complicated and advanced creep models can be 
considered in future work. 
 

4.5.4 Structure of this Section 
After introducing the motivation of this study in Section 4.5.1, we specify our 

intended technical contributions in Section 4.5.2. Under literature review in Section 
4.5.5, we first present the IVP method for modeling post-tensioned concrete before 
highlighting important concepts and formulas from Guyon (1953) based on Guyon’s 
BVP formulation. Section 4.5.6 shares a physical insight into the proposed model. Key 
assumptions, problem formulas and governing equations are presented systematically 
in 4.5.6.2 by leveraging and integrating the two methods reviewed in Section 4.5.5. 
Section 4.5.6.3 outlines the data-based strategy, mostly because of the unmodeled 
error – concrete shrinkage – that is not insignificant, and for insights into the solution. 
Section 4.5.7 details all aspects involved in our numerical investigation of applying the 
proposed method to the data obtained from an experimental investigation that is used to 
validate the proposed model and data-based solution. Discussions for future work are 
given there as well. Conclusions are drawn in Section 4.5.8. 
 

4.5.5 Literature Review 
Prestress loss in post-tensioned concrete can be modelled by the following 

ordinary differential equation (ODE) Testa (1998): 
 

 �̇�(𝑡) +
1
𝑘1 =

𝑘
𝑃0, where 𝑘1 =

1

𝐴𝑐𝐸𝑐
+
𝑙0𝑠
𝑙0
 

𝑘

𝐴𝑠𝐸𝑝𝑠
1

𝐴𝑐𝐸𝑐
+
𝑙0𝑠
𝑙0
 

𝑘

𝐴𝑠𝐸𝑝𝑠

  (4.7) 

 
The two parameters in the concrete standard solid model can be further understood as 
follows: 
 

• How much of the prestressing force is going to be left depends on 𝑘 

• How fast the prestressing force decays depends on 휂 
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To solve this ODE, we need IC, which is 𝑃(0) = 𝑃0. The solution to the ODE is: 
 

 𝑃(𝑡) = 𝑃0 [(1 −
𝑘

𝑘1
) 𝑒

−𝑘1
𝑡

𝜂 +
𝑘

𝑘1
] (4.8) 

 
Using Guyon’s Figure 13 (now in Figure 4.19), the displacements at each end of an 
infinitesimal element are defined before “the total strain” is obtained. In this figure 
dashed lines indicate the original shape and dotted lines the deflected shape. 
 

 
Figure 4.19: Following Figs. 11 and 13 in Chapter VII of Guyon (1953) but with a minor 

correction on both the concrete and strand ends. 
 
Then, Hooke’s law is applied to connect the total strain to the stress, from which an 
ODE is finally obtained to solve the wire stress f in §5 of Guyon (1953): 
 

 

𝐴𝑠𝑓

𝐸𝑐𝐴𝑐
𝑑𝑧+𝑑𝑔

𝑑𝑧
=
𝑓𝑠𝑖−𝑓

𝐸𝑝𝑠
 (4.9) 

 𝑓 =
𝑓𝑠𝑖

1+𝑚𝑝
−

𝐸𝑝𝑠

1+𝑚𝑝
∙
𝑑𝑔

𝑑𝑧
 (4.10) 

 

where 
𝐸𝑝𝑠

𝐸𝑐
 ≜ 𝑚 and 

𝐴𝑠

𝐴𝑐
 ≜ 𝑝. Eq. (4.10) captures the stress-strain behavior of the strand 

as a function of 𝑧 (a coordinate along the strand), which is an important equation used 
again in §5 of Guyon (1953). 
 
There are four types of bond: elastic, elastic-plastic, plastic, and friction bonds. For 
elastic bond, we have: 
 

 𝑓 =  𝑓𝑀 (1 − 𝑒
−
𝑧

𝜆) (4.11) 
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where 𝑓𝑀 =
𝑓𝑖

1+𝑚𝑝
. The bond is entirely elastic and the tension in the wire therefore varies 

according to an exponential law throughout. In addition, 

 𝜆 =
𝐸𝑝𝑠

𝑓𝑠𝑖
𝑔0 (4.12) 

 
where 𝜆, 𝑓𝑠𝑖, and 𝑔0 are the characteristic length (about one-third of the transfer length 
according to pp.196 of Guyon (1953)), initial stress, and draw-in. The stress in the wire 
at any point within the anchorage is given by: 𝑓 =  0.95𝑓𝑀 by substituting 𝑧 =  3𝜆 into 
Eq. 4.11, which means that “the anchorage is effectively complete” over a total of length 
of 3𝜆. 

4.5.6 1D Modeling with IVP and BVP 
4.5.6.1 Conceptual overview 
 

We extend Eq. (4.9), the key deformation compatibility equation in Guyon (1953) 
from 𝑡 =  0 to 𝑡 >  0. To do so, we have the following composition for the draw-in as a 
function of time: 
 
draw-in variation in time = a contribution from strand relaxation 
− a reduction from concrete creep accumulated over transfer zone 
 
where the creep of concrete will be evaluated using the standard solid model mentioned 
above.  
 

We will also extend Eq. (4.12) on p. 195 in Guyon (1953) to the time beyond 𝑡 =
 0. The measured draw-in time history can be scaled up and used as an approximated 
𝜆(𝑡), the characteristic length time history. 
 
4.5.6.2 Problem formulation 
Key assumptions made in this study are as follows: 
 

i. 1-D analysis only: We look into a zone characterized by z, which goes along a 
strand and the concrete bonded in its vicinity. 

 
ii. No drying shrinkage of concrete considered: This introduces an inherently 

unmodeled error. 
 

iii. A perfectly bonded core in the mid-section of a beam: This core is equivalent to a 
post-tensioned concrete beam. 

 
iv. No plastic/friction bond considered: An exponential stress distribution for elastic 

bond is considered for both strand and concrete at any time instance. 
 

We would like to highlight Item (iii). Eq. (4.7) on post-tensioned concrete is 
entirely applicable to the core (where the bond stress is zero) of the same prestressed 
concrete but made of pretensioning. Quick reasoning can be drawn from the St. 
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Venant’s principle: For a self-equilibrating system, the stress status would be the same 
except for the ends. 
 
For this 1-D problem involving both IVP and BVP, key aspects are examined as follows: 

a) Force equilibrium: This holds when there is no inertial effect. 
 

b) Compatibility equation via strand strain: See the following equations. 
 

c) Constitutive relations: While the strand is linear elastic, the concrete is linear 
viscoelastic. Specifically, a standard solid model is adopted as mentioned 
previously. Stress-strain behavior of each material is assumed to be uniaxial, 
considering normal stresses only. 

 
d) Initial condition: At 𝑡 =  0, strand and concrete stress, and 𝑔(𝑧, 0) are as derived 

in Chapter VII of Guyon (1953). 
 

e) Boundary conditions: At 𝑧 =  0 is a free end of the strand where 𝑔(0, 𝑡) is 
measured draw-in. This would be the focus of our study due to the motivation of 
utilizing and exploiting draw-in measurements. For 𝑧 ≥ 𝑥(𝑡), 𝑔(𝑥, 𝑡)  =  0 due to 
perfect bonded. This should be automatically satisfied from the adoption of the 
post-tensioned concrete model for the perfectly bond core. 

 
To proceed, we may start with the deformation compatibility equation, Eq. (4.9), 

from Guyon (1953) (after correcting the sign of the first term according to pp. 189): 
 

 −
𝑑𝑔

𝑑𝑧
+

𝐴𝑠𝑓

𝐴𝑐𝐸𝑐
=
𝑓𝑠𝑖−𝑓

𝐸𝑝𝑠
  (4.13) 

 
which can be extended to consider time due to concrete creep: 
 

 −
𝜕𝑔(𝑧,𝑡)

𝜕𝑧
+ 휀𝑐(𝑧, 𝑡) =

𝑃𝑖−𝑃(𝑧,𝑡)

𝐴𝑠𝐸𝑝𝑠
 (4.14) 

 
Integrating this differential equation from a free end to transfer length leads to the 
following equation: 
 

 −∫
𝜕𝑔(𝑧,𝑡)

𝜕𝑧

𝑥(𝑡)

0
𝑑𝑧 + ∫ 휀𝑐(𝑧, 𝑡)𝑑𝑧 =

𝑥(𝑡)

0
∫ [

𝑃𝑖−𝑃(𝑧,𝑡)

𝐴𝑠𝐸𝑝𝑠
] 𝑑𝑧

𝑥(𝑡)

0
 (4.15) 

 
where 𝑥(𝑡) represents transfer length. We have: 
 

 −∫
𝜕𝑔(𝑧,𝑡)

𝜕𝑧

𝑥(𝑡)

0
𝑑𝑧 = 𝑔(0, 𝑡)⏟  

𝑑𝑟𝑎𝑤−𝑖𝑛

− 𝑔(𝑥, 𝑡)⏟  
𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑟𝑎𝑛𝑑 𝑎𝑛𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

 (4.16) 

 
Quantitatively, the draw-in 𝑔(0, 𝑡) is as follows bearing in mind that 𝑥(𝑡) is targeted: 
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 𝑔(0, 𝑡)⏟  
𝑑𝑟𝑎𝑤−𝑖𝑛

= ∫ [
𝑃𝑖−𝑃(𝑧,𝑡)

𝐴𝑠𝐸𝑠
] 𝑑𝑧

𝑥(𝑡)

0⏟          
𝑓𝑟𝑜𝑚 𝑠𝑡𝑟𝑎𝑛𝑑 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

− ∫ 휀𝑐(𝑧, 𝑡)𝑑𝑧
𝑥(𝑡)

0⏟        
𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑟𝑒𝑒𝑝

 (4.17) 

 
It is assumed that 𝑃(𝑧, 𝑡) is expressed as follows based on the post-tensioned case and 
the formula for 𝑡 =  0: 
 

 𝑃(𝑧, 𝑡) = 𝑃0 [(1 −
𝑘

𝑘1
) 𝑒

−
𝑘1
𝜂
𝑡
+

𝑘

𝑘1
]

⏟              
𝑚𝑖𝑚𝑖𝑐𝑘𝑖𝑛𝑔 𝑓𝑀 𝑖𝑛 𝐺𝑢𝑦𝑜𝑛 (1953)

(1 − 𝑒−
𝑧

𝜆)⏟      
𝑠𝑒𝑒 𝑝𝑝.  185 𝑖𝑛 𝐺𝑢𝑦𝑜𝑛 (1953)

 (4.18) 

 
where we have 
 

𝑃0 =
𝑃𝑖

1+𝑚𝑝
, following Guyon (1953) p. 185:  𝑓𝑀 =

𝑓𝑠𝑖

1+𝑚𝑝
, for 𝑡 =  0 (4.19) 

 
which indicates the inefficiency of pretensioned concrete). 
 
The elastic deformation of concrete at 𝑡 =  0 is given as: 
 

 휀𝑐(𝑧, 0) =
𝐴𝑠

𝐴𝑐

𝑃(𝑧,0)

𝐴𝑠𝐸𝑐
=

𝑝

𝐴𝑠𝐸𝑐
𝑃(𝑧, 0) (4.20) 

 
while hereditary integral can be used to express the inelastic deformation of concrete at 
t ≥ 0 as follows: 
 

 휀𝑐(𝑧, 𝑡) =
𝑝

𝐴𝑠
(𝜙(𝑡)𝑃(𝑧, 0) + ∫ 𝜙(𝑡 − 𝜉)

𝜕𝑃(𝑧,𝜉)

𝜕𝜉

𝑡

0
𝑑𝜉) (4.21) 

 
where the creep compliance for the standard solid model is given as follows: 
 

 𝜙(𝑡) =
1

𝑘𝐸𝑐
[1 + (𝑘 − 1)𝑒

−
𝑘

𝜂
𝑡
] , 𝑘 < 1 (4.22) 

 

 𝜙(𝑡 − 𝜉) =
1

𝑘𝐸𝑐
[1 + (𝑘 − 1)𝑒

−
𝑘

𝜂
(𝑡−𝜉)

] (4.23) 

 
Also, we have: 
 

 𝑃(𝑧, 𝜉) = 𝑃0 [(1 −
𝑘

𝑘1
) 𝑒

−
𝑘1
𝜂
𝜉
+

𝑘

𝑘1
] (1 − 𝑒

−
𝑧

𝜆(𝜉)) (4.24) 

 
To reduce computational effort, an alternative form of Eq. (4.21) may be used after 
applying integration by parts: 
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 휀𝑐(𝑧, 𝑡) =
𝑝

𝐴𝑠
(𝜙(0)⏟

1

𝐸𝑐

𝑃(𝑧, 𝑡) − ∫
𝜙(𝑡−𝜉)

𝜕𝜉
𝑃(𝑧, 𝜉)

𝑡

0
𝑑𝜉) (4.25) 

 
where 
 

 
𝜙(𝑡−𝜉)

𝜕𝜉
=
𝑘−1

𝐸𝑐
𝑒
− 
𝑘

𝜂
(𝑡−𝜉)

 (4.26) 

It can be seen that Eq. (4.20) is a special case of both Eq. (4.21) and (4.25) by taking 
𝑡 =  0. 
 
4.5.6.3 Data-Based Solution Strategy 

Our data-based strategy is to take Eq. (4.12) for granted. That is, we use the 
measured draw-in time history to estimate a 𝜆 time history. These 𝜆 values would be 
substituted into Eq. (4.18) until draw-in time history together with the movement time 
histories of both strand and concrete are estimated as in Eq. (4.27): 
 

 𝑔(0, 𝑡)⏟  
𝑑𝑟𝑎𝑤−𝑖𝑛

= ∫ [
𝑃𝑖−𝑃(𝑧,𝑡)

𝐴𝑠𝐸𝑝𝑠
] 𝑑𝑧

𝐿

2
0⏟          

𝑓𝑟𝑜𝑚 𝑠𝑡𝑟𝑎𝑛𝑑 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛

− ∫ 휀𝑐(𝑧, 𝑡)𝑑𝑧
𝐿

2
0⏟        

𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑟𝑒𝑒𝑝

 (4.27) 

 
which is equivalent to Eq. (4.17) with the advantage of bypassing the unknown 𝑥(𝑡). 
The estimated draw-in would be compared with measured draw-in; a normalized root-
mean-squared (NRMS) error could be calculated as a measure to evaluate the 
performance of the model. 
 

This data-based strategy is adopted for the rest of the paper because the 
unmodeled error would be first reflected in the NRMS error; pursuing the best fit of data 
without considering unmodeled error is not the goal. Computationally, the data-based 
strategy is more straightforward leading to a unique solution every time with simple 
coding. 
 

4.5.7 Numerical Results 
A brief description of test setup and procedure for the data required can be 

referred to Dang et al. (2016). Both unit weight (𝑤𝑐) and concrete cylindrical 
compressive strength (𝑓′𝑐) were obtained for each specimen in most cases. Range 
values are given in Table 4.8 for efficiency in presentation, while the individual values 
will be used in the analysis to be given herein. 
 
Table 4.8: Ranges of 𝑤𝑐 and 𝑓′𝑐 values for the data used in this study. 

Property 
LWSCC 

1-4 
LWSCC 

5 
LWSCC 

6-9 
LWSCC 
10-13 

LWSCC 
14-17 

NWSCC 
1-4 

NWSCC 
5-8 

Nature Clay Shale Shale Clay Shale Limestone Limestone 

wc (pcf) 
114.0 -
119.9 

118.0 – 
120.3 

116.4 – 
122.3 

117.9 – 
122.4 

116.3 – 
123.0 

144.2 – 
146.8 

147.0 – 
148.3 

f’c 4900 – 4800 – 5800 – 6600 – 5800 – 6700 – 8800 – 
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Property 
LWSCC 

1-4 
LWSCC 

5 
LWSCC 

6-9 
LWSCC 
10-13 

LWSCC 
14-17 

NWSCC 
1-4 

NWSCC 
5-8 

7200 5200 7100  7900  8000  8000  9700  

 
4.5.7.1 Section and materials properties 
 

1. 𝐴 =  80.6 𝑖𝑛2, 𝐴𝑠  =  0.434 𝑖𝑛
2. Thus we have: 𝐴𝑐  =  𝐴 − 𝐴𝑠. 

 
2. It has been known that 𝐸𝑝𝑠 = 28500 𝑘𝑠𝑖, and 𝑓𝑠𝑖 = 202.5 𝑘𝑠𝑖. 

3. The ACI formula is used to estimate 𝐸𝑐, which can be replaced with actually 
measured values in the future: 

 

  𝐸𝑐 = 33𝑤𝑐
1.5√𝑓′𝑐 (4.28) 

 
 where 𝑤𝑐 is in the unit of 𝑝𝑐𝑓, and 𝐸𝑐 and 𝑓′𝑐 are in the unit of 𝑝𝑠𝑖. 

 
4. 𝑙0 was recorded as 18 ft, however 𝑙0𝑠 was not available. Nonetheless, we can 

obtain 
𝑙0𝑠

𝑙0
 from the standard solid model for concrete. 

 
5. Regarding k: It comes from the standard solid model for concrete. Given its 

corresponding creep compliance function in Eq. (4.22), it can be seen that 1 k is 
equal to the ultimate creep coefficient defined as “the ratio of the creep strain to 
the initial strain” according to ACI 209.2R-08 pp. 5 out of 44. On p. 19 out of 44, 
“for the standard conditions, in the absence of specific creep data for local 
aggregates and conditions, the average value proposed for the ultimate creep 
coefficient 𝜙𝑢 is” 2.35, which was used in the first trial. Also, it points out on pp. 
11 out of 44 that creep coefficient can vary from 1.2 to 9.2, which will be tested. 

 
6. 𝑘1 is calculated from Eq. (4.7) and affected by the value of 𝑘. 

 
7. The values of 휂, strictly speaking, should come out of the creep time histories of 

all concrete used. By applying Eq. (4.22), it can be seen that the initial slope of a 
creep strain time history would be: 

 

 
𝑑

𝑑𝑡
|𝑡=0 = 𝜎0

1−𝑘

𝐸𝑐
= 휀0(1 − 𝑘)

1
 (4.29) 

 
 from which the value of 휂 could be estimated. However, the only available data is 

concrete surface strain data for LWSCC. Assuming the concrete at 𝑧 =  142.5 𝑐𝑚 

is subject to a creep-like load (i.e., neglecting prestress loss) and 𝑘 =
1

2.35
 for all, 

the values of 휂 are estimated and summarized in Tables 4.9 and 4.10, which are 
rough values: 
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Table 4.9: Values of 휂 (in the unit of day) for LWSCC 1-9 estimated by using the 
measured concrete  
LWSCC-

1 
LWSCC-

2 
LWSCC-

3 
LWSCC-

4 
LWSCC-

5 
LWSCC-

6 
LWSCC-

7 
LWSCC-

8 
LWSCC-

9 

5.745 3.240 4.778 5.181 2.193 2.482 3.020 3.233 3.199 

 
Table 4.10: Values of 휂 (in the unit of day) for LWSCC 10-17 estimated by using the 
measured concrete 

LWSCC-
10 

LWSCC-
11 

LWSCC-
12 

LWSCC-
13 

LWSCC-
14 

LWSCC-
15 

LWSCC-
16 

LWSCC-
17 

8.021 8.195 7.114 5.219 5.451 5.347 9.873 10.247 

 Since there are no concrete surface strain measurements for NWSCC, 5.267 
days, the average value of 휂 for LWSCC, will be adopted for all NWSCCs. 

 
8. The “release” reading was taken immediately after the strand cutting process 

was complete. The “release” reading was the first strand slip reading. So, the 
time is reset to make this time instance 𝑡 =  0 throughout. 

 
4.5.7.2 Data-Based Estimation 

To provide a convincing example for the proposed analysis, the prestress loss 
needs to be “predicted” first of all. See Figure 4.20. 
 

Figures 4.21, 4.22, and 4.23 indicate that, even though the measured draw-in 
time histories come in different forms, the proposed method can (i) reproduce a draw-in 
time history that seems to be fairly similar to the measured one, and (ii) reproduce both 
strand and concrete movement time histories at the end that cannot be measured, but 
seem rational because their difference is reasonable compared to our measured values 
of end slip which would be a measure of the relative motion. Since the measured draw-
in time histories are incomplete for LWSCC-3 and 4 by missing Day 3 data, their 
predictions are not available. 
 
  



89 
 

 

F
ig

u
re

 4
.2

0
: 
O

n
e

-y
e

a
r 

p
re

s
tr

e
s
s
in

g
 l
o

s
s
 o

f 
s
e

le
c
te

d
 s

p
e

c
im

e
n

s
 b

y
 a

s
s
u

m
in

g
 t

h
e

 u
lt
im

a
te

 c
re

e
p

 c
o

e
ff
ic

ie
n

t 
to

 b
e

 2
.3

5
 

a
n

d
 u

s
in

g
 t
h

e
 v

a
lu

e
s
 f
o

r 
휂
 i
n
 T

a
b

le
 2

. 



90 
 

 
Figure 4.21: Measured vs. predicted draw-in, and predicted end movement of strand 

and concrete for LWSCC-12 
 

 
Figure 4.22: Measured vs. predicted draw-in, and predicted end movement of strand 

and concrete for LWSCC-15  
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Figure 4.23: Measured vs. predicted draw-in, and predicted end movement of strand 

and concrete for NWSCC-8. 
 

The estimated draw-in time histories are always over-predicting; the normalized 
root-mean-squared errors are summarized in Tables 4.11, 4.12, and 4.13 for LWSCC 
and NWSCC, respectively. These error values are nontrivial, however they are not 
abnormal for the well-known challenging problem of predicting time-dependent 
behaviors of concrete. 
 
Table 4.11: Normalized root-mean-squared error in percentage for all LWSCC’s with an 

average of 15.9%, where 𝑘 =
1

2.35
 for all and 휂 values follows Table 4.9. 

ID LWSCC-
1 

LWSCC-
2 

LWSCC-
3 

LWSCC-
4 

LWSCC-
5 

LWSCC-
6 

LWSCC-
7 

LWSCC-
8 

LWSCC-
9 

NRMS 27.3 15.0 NA NA 11.2 10.7 10.1 9.9 11.0 

 
Table 4.12: Normalized root-mean-squared error in percentage for LWSCC 10-17 with 

an average of 15.9%, where 𝑘 =
1

2.35
 for all and 휂 values follows Table 4.9. 

ID LWSCC-
10 

LWSCC-
11 

LWSCC-
12 

LWSCC-
13 

LWSCC-
14 

LWSCC-
15 

LWSCC-
16 

LWSCC-
17 

NRMS 18.3 22.4 14.5 16.7 18.9 15.8 15.6 20.5 

 
Table 4.13: Normalized root-mean-squared error in percentage for all NWSCC’s with an 

average of 12.1%, where 𝑘 =
1

2.35
 and 휂 =  5.267 for all. 

ID NWSCC-
1  

NWSCC-
2 

NWSCC-
3 

NWSCC-
4 

NWSCC-
5 

NWSCC-
6 

NWSCC-
7 

NWSCC-
8 

NRMS 14.0 18.0 11.2 2.1 12.4 9.0 15.6 13.8 
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The proposed method validates the suitability of applying Eq. (4.12) to arbitrary 
time (i.e., for inelastic deformation of concrete). Figure 4.24 typifies how this can be 
done: At 𝑡, an arbitrary time instance when we recorded draw-in, the value of z(t) can be 
conveniently obtained if we trace 95% of the maximum stress on the predicted stress 
distribution. This 𝑧(𝑡) can be considered as 𝑥(𝑡), the transfer length at 𝑡. Since we are 
concerned with limiting behavior, the maximum value of all x(t)’s is compared with three 
times of the maximum value of 𝑥(𝑡)’s calculated from measured draw-in using Eq. 
(4.12). We use their ratio to quantify their difference. 
 

This ratio is examined for all specimens whose predictions are available. This 
ratio turns out to be consistently small with a mean value of 1.0856 and 1.0247 for 
LWSCC and NWSCC, respectively. Even though the NRMS error for predicted draw-in 
is not insignificant, this ratio can be considered much less significant. We suspect that 
these approximate numbers could be applied in conjunction with Eq. (4.12) for a rough 
but quick estimate of the transfer length at a certain time instance in the field - whenever 
the draw-in measurement at the same time instance is available: 
 

 𝑥(𝑡) ≈ 1.0856 × 3 ×
𝐸𝑝𝑠

𝑓𝑠𝑖
× 𝑔(0, 𝑡), for NWSCC (4.30) 

 

 𝑥(𝑡) ≈ 1.0247 × 3 ×
𝐸𝑝𝑠

𝑓𝑠𝑖
× 𝑔(0, 𝑡), for LWSCC (4.31) 

 
where the small ratios of 1.0856 and 1.0247 would be further validated for accuracy, 
and would be replaced with other properly obtained ratios for other types of concrete. 
The accuracy of this empirical approach for estimating transfer time would improve 
together with the analysis on drying shrinkage of concrete, the unmodeled error in this 
study. 
 

The value of fsi = 202.5 ksi is adopted in the above numerical results based on 
the actual initial stress in the strand. The Oklahoma Department of Transportation 
(ODOT) practice may prefer the value of fsi = 189 ksi instead. The same numerical 
routine would be adopted to process the new data measurements to be collected in the 
future as a further validation of the proposed prediction method. 
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Following the arrow, curves are for times of release, 3, 5, 7, 14, and 28 days 

Following the arrow, curves are for times of release, 3, 5, 7, 14, and 28 days 

Figure 4.24: Time evolution of strain distribution for both stand and concrete and 
estimated transfer length in comparison with 3𝜆 for LWSCC-12 with 𝑤𝑐  =  120.45 𝑝𝑐𝑓, 

𝑓′𝑐 = 6700 𝑝𝑠𝑖, 𝑘 =
1

2.35
 and  휂 =  7.114 𝑑𝑎𝑦. Only the left half is presented due to 

symmetry. 
 

4.5.8 Summary 
To predict time-dependent behaviors of pretensioned concrete, a simple yet 

effective 1-D model has been established by leveraging an existing IVP model for 
concrete creep and strand relaxation in post-tensioned concrete and Guyon’s 
instantaneous elastic shortening analysis based on BVP. By directly utilizing draw-in 
time history measured from a pretensioned concrete beam and other section and 
material properties, many facets of bond-transfer behavior can be predicted revealing 
the insights into the time-dependent interaction of strand and concrete that would 
otherwise be obscure in current literature. Even though challenging, the proposed 
method has been validated to the best extent by utilizing a total of 17 lightweight and 8 
normal weight scaled pretensioned concrete beams that were not designed to validate 
the proposed method per se. Drying shrinkage of concrete causes the most significant 
unmodeled error; the effect of which is discussed for future work. The principle and 
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procedure of injecting draw-in time history measurement to time-dependent modeling of 
pretensioned concrete - as a critical piece of information - have been established in this 
study; the work enables feasible field implementation and practical application of this 
data-based method to clarify and explain actual bond transfer behavior critical to long-
term performance of pretensioned concrete. 
 

5. Backbone Analysis of Free Vibration Data 

5.0 Nomenclature 
𝑎(𝑡) instantaneous amplitude of 𝑥(𝑡) 
𝑗 imaginary unit 

𝐾 sampling rate (integer number of points per damped cycle) 

𝑁 number of points in test signal 
𝑥(𝑡) real signal 
�̃�(𝑡) Hilbert transform of 𝑥(𝑡) 
𝑧(𝑡) = 𝑥(𝑡) + 𝑗�̃�(𝑡) analytic signal associated with 𝑥(𝑡) 
𝜔(𝑡) instantaneous frequency of 𝑥(𝑡) 
𝜙(𝑡) instantaneous phase of 𝑥(𝑡) 
휁 damping ratio (휁 =  1 is critically damped) 
 

5.1 Overview 
 This chapter summarizes why we study backbone theory, some advances we 
have made in backbone analysis of free vibration data, and how this kind of analysis 
would help in the engineering practice of the Oklahoma Department of Transportation 
(ODOT). Details of the ideas provided here are available in the recent OU PhD thesis 
(Tang (2015)). 
 

5.1.1 Motivations  
 Structural Health Monitoring (SHM) and damage detection have been popular 
and important research areas for decades, for example Doebling et al. (1996); Housner 
et al. (1997); Sohn et al. (2002); Chang et al. (2003); Lynch and Loh (2006); Kerschen 
et al. (2006); Farrar and Worden (2007); Goyal and Pabla (2015). Monitoring civil 
infrastructure to collect data should not be an end goal; extracting useful information out 
of the data and interpreting the results to reveal meaningful implications about the civil 
infrastructure being monitored have always been the ultimate goal. Daunting challenges 
inherently reside in the process of data processing and result interpretation because this 
process is often where theory and reality collide with measurement noise, un-modelled 
complexities, and assumption inaccuracies. This calls for a great deal of extensive and 
in-depth research to best realize the potential of monitoring efforts by providing 
meaningful, accurate and timely end results to decision makers. 
 
 As an important component of SHM, advancement in system identification, 
especially nonlinear system identification, is in demand. We must pay attention to 
nonlinear material behaviors, geometric and mechanical nonlinearities. Many 
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construction materials (e.g., concrete, asphalt, and timber) will respond in highly 
nonlinear ways under large or cyclic loads (e.g., loading rate-dependent viscosity or 
hysteresis). Unfortunately, modal analysis-based (or eigen-problem-based) linear 
approaches have been dominating structural health monitoring causing large un-
modelled errors. Studying, understanding, and applying truly nonlinear methods to 
nonlinear problems in practice are in great need.  
 

Vibration signals have been heavily studied for the purpose of many engineering 
disciplines including aerospace engineering, bio-medical engineering, civil engineering, 
electrical engineering, mechanical engineering, and more. Computerized methods of 
dynamical systems identification generally involve the extraction of backbone 
approximations from digitized signals. In addition to the Hilbert transform approach 
presented by Feldman (2011a), various backbone techniques are discussed in the 
literature; see for example Renson et al. (2016); Londoño et al. (2015); Kerschen et 
al.(2006); Adams and Allemang (1998). In the framework of analytic signal theory, let 
𝑥(𝑡) be a real signal and �̃�(𝑡) be its Hilbert transform 
 

 �̃�(𝑡) =
1

𝜋
𝑃 ∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

+∞

−∞
 (5.1) 

 
where 𝑃 indicates the Cauchy principal value. The analytic signal associated with 𝑥(𝑡) is 
the complex signal 𝑧(𝑡) = 𝑥(𝑡) + 𝑗�̃�(𝑡). In polar notation, 
 

 𝑧(𝑡) = 𝑎(𝑡)𝑒𝑗𝜙(𝑡) (5.2) 
 

where 𝑎(𝑡) = √𝑥2(𝑡) + �̃�2(𝑡) ≥  0 is the instantaneous amplitude, 𝜙(𝑡)  =  𝑡𝑎𝑛−1 (
�̃�(𝑡)

𝑥(𝑡)
) 

is the instantaneous phase, and 𝜔(𝑡)  =  
𝑑𝜙

𝑑𝑡
 is the instantaneous frequency. The phrase 

“analytic-signal backbone” refers to the parametric curve 𝑎(𝑡) versus 𝜔(𝑡). 
 

5.1.2 Feldman’s backbone technique 
 Figure 5.1(a) shows a vibration signal as the free response of a single-degree-of-
freedom (SDOF) system which can be used to represent a subsystem of interest in the 
aforementioned disciplines, and Figure 5.1(b) is the corresponding backbone curve. The 
vibration signal is normally a transient signal with a decaying profile in amplitude – 
among many other subtle details. The backbone curves of such signals are our primary 
focus. Many vibration signal analysis methods are dedicated to identifying the properties 
of the system underlying the signal, such as modal frequencies and damping ratio. 
Here, the goal would be to extract system properties concerning the existence and 
types of nonlinearities. This is the big picture concerning nonlinear system identification 
and damage detection, where signal processing and data analysis play a critical role. 
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Figure 5.1: An idealized illustration of (a) a vibration signal, and (b) its backbone curve. 

 
 The heart of this research is to represent a transient signal as illustrated above 
using a two-dimensional curve with a distinct feature called “backbone” – see Figure 
5.1(b) – defined by the signal’s instantaneous amplitude and instantaneous frequency. 
The concept of the “backbone” originates from Feldman’s work, e.g., Feldman (1994a, 
2011a,b). It is said to be “a very helpful and traditional instrument in vibration analysis” 
Feldman (2011b). Figure 5.2 showcases the capability of the backbone technique for 
identifying many types of nonlinearity of SDOF models including but not limited to – 
according to Feldman (1994a) – nonlinear spring models (such as hardening, softening, 
backlash, pre-compressed strings, bilinear, or impact), and nonlinear damping models 
(frequency-dependent or frequency-independent). 
 

 
Figure 5.2: Idealized backbones of typical models: (1) linear; (2) hardening; (3) 

softening; (4) backlash; (5) preload. This figure is reproduced by following Feldman 
(2011b). 
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 Hilbert transform is the focus of the studies due to its well-known aspect of being 
suitable for nonlinear and nonstationary signal processing (Cohen 1995; Hahn 1996; 
King 2009a,b; Feldman 2011a, just to name a few key classical references studied by 
us and used as the main tools. Backbone – as a system identification method 
introduced by Dr. Feldman based on Hilbert transform – has also been around for 20 
years. Dr. Feldman’s series of publications related to Hilbert transform and backbone 
technique starting from 1990’s is summarized in Table 5.1. 
 
Table 5.1: Overview of selected publications by Dr. Feldman starting from 1990’s. 
Year Reference Topic Summary 

1994 Feldman 
(1994a,b) 

FREEVIB and 
FORCEVIB 

Detecting nonlinearity and viscous damping ratio 
of a SDOF model based on backbones from free 
or forced response 

1995 Feldman and 
Braun (1995) 

Identification of system 
parameters 

Estimating system parameters by using a lowpass 
filter on backbone 

1997 Braun and 
Feldman (1997) 

Time-frequency 
characteristics 

Characterizing nonlinear systems from time-
frequency variations of response signals 

1997 Feldman (1997) FREEVIB Approximating free vibration backbone by using 
averaging instantaneous amplitude and frequency 

2005 Feldman (2005) Identification of system 
parameters 

Estimating system parameters including natural 
frequency and damping using Hilbert transform 

2006 Feldman (2006) Signal decomposition 
technique 

Proposing a signal decomposition method named 
after Hilbert Vibration Decomposition (HVD) 

2011 Feldman 
(2011a,b) 

Applications of Hilbert 
transformation  

Presenting comprehensive reviews of topics 
related to Hilbert transform applications 

 

5.1.3 Research needs: a motivating example 
 We consider the backbone technique a nonlinear system identification technique 
based upon instantaneous amplitude and frequency. The correspondence between the 
backbone feature and type of nonlinearity given in Figure 5.2 could be used as a pattern 
classifier because different types of nonlinearities in the system would cause the 
backbone to bend in different directions (with more details), whilst the backbone will not 
bend at all for a pure linear system. The pattern classifier idea illustrated in Figure 5.2 
seems straightforward, however a significant amount of technical details demands 
correct and efficient solutions to bring the idea to fruition given the team’s experience 
(Jones and Pei 2009).  
 
As a test signal, consider 
 

 𝑥(𝑡) =  𝑒− 𝑡 [𝑐𝑜𝑠(√1 − 휁2𝑡) +
√1− 2

𝑠𝑖𝑛(√1 − 휁2𝑡)] (5.3) 

 
which is the solution of the damped harmonic oscillator equation 
 
 �̈�(𝑡) + 2휁�̇�(𝑡) + 𝑥(𝑡) = 0, subject to 𝑥(0) = 1, �̇�(0) = 0  (5.4) 
 
where 𝑡 is a dimensionless time, scaled so that the undamped oscillator frequency is 
one. See (for example) Eq. (5.2.3) in Kovacic and Brennan (2011). 
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 Unless filtering is utilized, analytic-signal backbones of lightly damped harmonic 
oscillators are oscillatory, with the magnitude of their oscillations increasing as the 
damping ratio 휁 increases. The Hilbert transform (HT) of the test signal exists if 휁 =  0 
(viz., the HT of 𝑐𝑜𝑠(𝑡) is 𝑠𝑖𝑛(𝑡)). However, the HT of the test signal does not exist if 휁 >
 0 because the integrand becomes infinite as t goes to −∞; similarly it does not exist if 

휁 <  0 because 𝑥(𝑡) is unbounded as t goes to +∞. Alternatively, if the test signal 𝑥(𝑡) 
is assumed to be zero for 𝑡 <  0 (an initial value problem), then the HT of 𝑢(𝑡)𝑥(𝑡), 
where 𝑢(𝑡) denotes the unit step function, does not exist because �̃�(𝑡) has a logarithmic 
singularity at 𝑡 =  0, caused by the jump discontinuity at that time. The undamped case, 

𝑢(𝑡) 𝑐𝑜𝑠(𝑡), was discussed in detail by Loughlin (1998), but even if 휁 >  0, the jump 
discontinuity at 𝑡 =  0 still causes the HT of the test signal to have a logarithmic 
singularity at that time. 
 
 It is worth noting that a 1998 survey by Adams and Allemang (1998) stated that 
the Hilbert transform approach to backbone extraction requires “extravagant” and 
“heroic” filtering efforts. The Hilbert “transformer” adopted by Feldman is a digital 
filtering concept aimed at correcting unfiltered Hilbert transform computations. An 
implementation of the Hilbert transformer concept, based on the Remez exchange 
algorithm, is discussed in Section 3.3 of Feldman (2011a) with online software available 
as part of Hilbert Vibration Decomposition (HVD). We used relevant parts of this 
software without modification. A significant limitation of the HVD software is that the 
signal length must be 691 points or more. Consequently for the results presented next, 
the number of cycles was increased to 20, and the sampling frequency was increased 
to 40 (i.e., equivalent to 𝐾 =  41 points per damped cycle), producing a test signal with 
𝑁 =  801 points. The damping ratio was set to 휁 =  0.02. Figure 5.3 shows HVD results 
for this 801-point test signal. 
 
Such considerations (i.e., challenges) have provoked various approximations that 
(eventually) produced physically sensible results for harmonic oscillators with light 
damping, defined here as 0 ≤  휁 ≤  0.1 (critical damping is 휁 =  1). One such 

approximation was to introduce a “mirror” at 𝑡 =  0, thereby reflecting the test signal 
from the positive time region into the negative time region; see Huang et al. (2003). 
Placing a mirror at 𝑡 =  0, thereby eliminating the jump discontinuity there, is closely 

related to an idea discussed in Meissner (2012) where time 𝑡 in the exponent of 𝑒− 𝑡 is 

replaced by its absolute value 𝑒− |𝑡|. Computations were done in MATLAB using 
hilbert.m which is an implementation of Marple’s Discrete-Time ‘Analytic’ Signal method 
Marple Jr. (1999). To reduce discretization errors (attributable to aliasing, leakage, etc.), 
the test signals were carefully sampled at an integer number 𝐾 points per damped 

cycle, where one period of a damped cycle is 
2𝜋

√1− 2
, verifiable from 

 

 �̇�(𝑡) = −
𝑒−𝜁𝑡

√1− 2
𝑠𝑖𝑛(√1 − 휁2𝑡) (5.5) 
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For comparison, Figure 5.4 shows unfiltered results using the mirroring technique. 
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 The root-mean-square (RMS) error of the instantaneous frequency was 
calculated, producing 0.2267 for HVD (Figure 5.3), and 0.0027 for the unfiltered case 
(Figure 5.4). Because of the end effects in Figures 5.3 and 5.4, the RMS errors were re-
calculated using only selected portions of the instantaneous frequency for the time 
between the two red marks in each figure, resulting in (respectively): 0.0199, and 
0.0027. 
 
 To summarize the research needs, first, it requires an in-depth understanding of 
the approximation nature of applying the concepts of analytic signal and Hilbert 
transform to the transient signals in the specified application. When filtering is not 
utilized, the actual backbones would be oscillatory, as shown in Figure 5.5 for linear, 
hardening and softening Duffing oscillators. When filtering is utilized, a good 
compromise needs to be made. Second, performing the Hilbert transform on finite-
length discrete signals, the so called discrete Hilbert transform (DHT), requires properly 
handling frequency leakage. Next, signal decomposition is necessary when a signal is 
not monocomponent in nature as almost always happens with real-world (i.e., 
measured) data. Also, the applicable range of the backbone technique requires a 
significant expansion so that the technique could be useful when the recorded response 
is not long enough. 
 

 
Figure 5.5: Raw backbones under various cubic stiffness α values in the Duffing 

oscillator of �̈�(𝑡)  +  2 ×  2% × (2𝜋 15)�̇� (𝑡)  +  (2𝜋 ×  15)2𝑥(𝑡)  +  𝛼𝑥3(𝑡)  =  0 with 
initial condition 𝑥(0)  =  10 and �̇� (0)  =  0. 

 

5.2 Contributions of this Work and Organization of this Chapter 
 To respond to the research needs, Section 5.3 puts forth two simple techniques 
that can effectively mitigate the end effects in the DHT; details are omitted from this 
chapter but are available in Tang (2015). Section 5.4 introduces a new signal 
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decomposition method that is based on a concept called “time index” proposed by us. 
Section 5.5 presents sample real-world results to showcase the efficiency of our 
improved backbone technique. We omit our novel piecewise DHT technique for 
analyzing free vibration data when damping effects are large; details are available in OU 
PhD thesis (Tang 2015). 
 

5.3 Simple Techniques to Ameliorate End Effects in the DHT 
 To minimize frequency leakage, it is essential to reduce the discrepancy caused 
by periodic extension. One way to achieve this goal is to reverse the original signal and 
concatenate this with the original signal. Figure 5.6 illustrates this idea when the 
reversal and concatenation take place at the right end of the original signal. The 
reversal and concatenation can take place at the left end of the original signal as well, 
however we will not illustrate and discuss this situation hereafter. This is referred to as 
“even extension” by following the same terminology for Fourier series and in discrete 
cosine transform (DCT). 
 

 
Figure 5.6: Illustration of flipping (b) and periodic extension (c). The original signal in (a) 
has a length of 𝑁 =  6 and is defined for 𝑛 =  0, 1, 2, 3, 4, 5. The new signal in (b) has a 

length of 2𝑁 − 2 =  10 and is defined for 𝑛 =  0, 1,⋯ , 8, 9. 
 

Intuitively, this add-on procedure eliminates a sudden “jump”, i.e., a high-
frequency leakage that could otherwise happen during a periodic extension. For DFT, 
this would help cure Gibb’s phenomenon. Nonetheless, this add-on procedure may still 
cause another unwanted side effect. Referring to Figure 5.6(c), the two ends of the 
original signal become local extrema (i.e., minima or maxima) after the proposed even 
extension, which may or may not be consistent with the original signal as illustrated in 
Figure 5.7. 
 

 
Figure 5.7: An illustration of “phase distortion”, the limitation with the proposed even 
extension. The red box highlights the undesired local extrema introduced by even 

extension. 



103 
 

 For a typical vibration signal, there would be more than one cycle of oscillations. 
One such example is given in Figure 5.8. We propose two add-on procedures that could 
complement Marple’s DHT algorithm to significantly reduce the end effects. Huang et al. 
(2003) contains similar but empirical approaches to the empirical mode decomposition. 
 
 Our work, in contrast, is not for this purpose. We first examine in-depth three 
major DHT algorithms, namely Cizek in Cizek (1970), Kak in Kak (1977), and Marple in 
Marple Jr. (1999), and conclude their mathematical equivalence. This fact about their 
mathematical equivalence alone could help better understand and expedite the 
development of DHT theories and practice. The two add-on procedures follow naturally 
by first quantifying the limitation of even extension adopted from Fourier series. To 
address this limitation, local extrema trimming is proposed with a tradeoff. Proofs 
concerning the two properties in Marple Jr. (1999) are provided in our work but not in 
this chapter. 
 

5.4 Time Indices Based Signal Decomposition Method 
 To start, two mono-component signals, 𝑥1(𝑡), 𝑥2(𝑡), and their sum (a double-
component signal), 𝑥(𝑡), can be denoted as follows: 
 
 𝑧1(𝑡) = 𝑥1(𝑡) + 𝑗�̃�1(𝑡), 𝑧2(𝑡) = 𝑥2(𝑡) + 𝑗�̃�2(𝑡), 

 𝑧1(𝑡) + 𝑧2(𝑡)⏟        
𝑧(𝑡)

= 𝑥1(𝑡) + 𝑥2(𝑡)⏟        
𝑥(𝑡)

+ 𝑗 [�̃�1(𝑡) + �̃�2(𝑡)⏟        ]
�̃�(𝑡)

 (5.6) 

 
where 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧(𝑡) are the analytic signal of 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥(𝑡), respectively, 
while �̃�1(𝑡), �̃�2(𝑡) and �̃�(𝑡),  are the corresponding Hilbert transforms. 
 
In this study, the following assumptions are made: 

Assumption #1. 𝑎1(𝑡)  >  𝑎2(𝑡) and 𝜔1(𝑡)  <  𝜔2(𝑡), ∀𝑡. This assumption is adopted 
from Feldman (2006, 2011b) and Feldman (2011a) (pp. 62) and 
applied throughout this chapter. 

 
Assumption #2. 𝑎𝑖(𝑡) and 𝜔𝑖(𝑡)’s are all slow varying for 𝑖 =  1, 2, adopted from 

Feldman (2011b) (pp. 746). This assumption is applied whenever 
specified in this section. This assumption is interpreted as 𝑎𝑖(𝑡) and 
𝜔𝑖(𝑡)’s  first and second time derivatives being negligible. 

 
 In a Cartesian coordinate system for analytic signal, 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧(𝑡) can be 

depicted in Figure 5.9 by vectors 𝑂𝐴⃗⃗⃗⃗  ⃗, 𝑂𝐵⃗⃗ ⃗⃗  ⃗, and 𝑂𝐶⃗⃗⃗⃗  ⃗, respectively. In this representation, 
the angle with respect to the real axis and the length of a vector are wrapped phase and 
instantaneous amplitude of an analytic signal, respectively. Unwrapped phase would be 
the corresponding wrapped phase plus a multiple of 2𝜋’s depending on how many full 
cycles the vector has rotated at time 𝑡. 
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with add-on 

with add-on 
with add-on 

w/o add-on 

w/o add-on 

w/o add-on 

Figure 5.8: Comparison of results obtained with and without our proposed add-on 
procedures when Marple’s DHT algorithm is used. The signal is a simple free vibration 

signal and has a form of 𝑥[𝑛]  =  𝑒−0.05𝑛/𝐹𝑠  𝑐𝑜𝑠(𝑛/𝐹𝑠) with 𝐹𝑠  =  500 and 𝑛 =
 0, 1,⋯ , 35000. 𝑡 =  𝑛/𝐹𝑠, 𝑥(𝑡)  =  𝑒

−0.05𝑡 𝑐𝑜𝑠 𝑡. (a) shows the original signal and (b) 
shows the DHT results with both procedures. The comparison clearly indicates that the 
add-on procedures not only reduce the end effects to a large extent (see Panels (i) and 

(ii)) but also eliminate erroneous ripples towards the mid-section (see Panel (ii)). 
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Figure 5.9: Analytic signals in complex coordinate plane for an arbitrary time instance 𝑡, 

where 𝑂𝐴⃗⃗⃗⃗  ⃗, 𝑂𝐵⃗⃗ ⃗⃗  ⃗, and 𝑂𝐶⃗⃗⃗⃗  ⃗ depict the analytic signals 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧(𝑡), respectively. 
 
 Applying the assumptions above, Figure 5.10 illustrates a typical rotation cycle 
involving 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧(𝑡) with an additional assumption that 𝑧1(𝑡) and 𝑧2(𝑡) start off 
with no difference in wrapped phase and they both happen to be on the real axis - as 
shown in Panel (a). Time instances corresponding to Panels (a), (c) and (e) are of 
particular interest, when 𝑧1(𝑡) and 𝑧2(𝑡) are in phase, antiphase, and in phase again. To 
capture these special moments, a mapping will be introduced shortly. 
 

 

 
Figure 5.10: Evolution of 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧(𝑡) with time. Time increases gradually from 

panels (a) to (e). As will be shown hereafter, (a) 𝑡 = 𝑡0 = 0, (c): 𝑡 =  𝑡1, and (e): 𝑡 =  𝑡2. 
A mapping 
 
 𝑓: 𝑛 ⟼ 𝑡𝑛, with 𝑛 ∈  ℕ0 (5.7) 
 
is defined such that 
 
 ∆𝜙(𝑡𝑛+1) − ∆𝜙(𝑡𝑛) = 𝜋 (5.8) 
 
where time instance 𝑡𝑛 has a clear physical interpretation: From 𝑡𝑛 to 𝑡𝑛+1, ∆𝜙(𝑡), the 

phase difference between 𝑧2⃗⃗  ⃗(𝑡) and 𝑧1⃗⃗  ⃗(𝑡), is increased by π. In Figure 5.10, 𝑡𝑛’s with 

𝑛 =  0, 1, and 2 correspond to the time instances when the three vectors 𝑧1⃗⃗  ⃗(𝑡), 𝑧2⃗⃗  ⃗(𝑡) 
and 𝑧 (𝑡) line up, i.e., in Panels (a), (c) or (e) at 𝑡 =  𝑡0, 𝑡 =  𝑡1, and 𝑡 =  𝑡2, respectively. 
𝑧2⃗⃗  ⃗(𝑡) rotates 𝜋 more than 𝑧1⃗⃗  ⃗(𝑡) from 𝑡𝑛 to 𝑡𝑛+1. 
 
 The innovation in this study depends heavily on the introduction of both 𝑡𝑛 and 

∆𝜙(𝑡𝑛). Figure 5.11(a) illustrates an important property, for 𝑛 ∈  ℕ0, 𝑧 (𝑡) and 𝑧1⃗⃗  ⃗(𝑡) have 
the same phase value: 
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 𝜙(𝑡𝑛) = 𝜙1(𝑡), ∀𝑛 ∈  ℕ
0   (5.9) 

 
 This can be justified by applying Assumption #1 and the idea of mathematical 

induction starting with 𝜙(𝑡0)  =  𝜙1(𝑡0). Since 𝜙(𝑡)  ∈  ∁ and 𝜙1(𝑡)  ∈  ∁, �̂�(𝑡) ≜ 𝜙(𝑡)  −
𝜙1(𝑡)  ∈  ∁. Given the continuity of �̂�(𝑡), 𝜙(𝑡)  − 𝜙1(𝑡)  has the same sign between 𝑡𝑛 
and 𝑡𝑛+1. Eq. (5.9) lays the foundation for the proposed signal separation method. 
 
The procedure of the proposed signal decomposition method is given as follows: 
 

1. Perform DHT of a given double-component signal 𝑥(𝑡) that satisfies Assumptions 
#1 and #2 to obtain 𝑎(𝑡), 𝜙(𝑡), and 𝜔(𝑡). 

 
2. Option A: Locate all local maxima and minima of 𝑎(𝑡); Option B: Locate all local 

maxima and minima of 𝜔(𝑡). With either option, all corresponding time instances 

form the set of 𝑡𝑛 with 𝑛 ∈  ℕ0. 
 

3. Find all 𝜙(𝑡𝑛) values corresponding to all 𝑡𝑛. Given Eq. (5.9), these 𝜙(𝑡𝑛) will be 
considered as 𝜙1(𝑡𝑛) 

 
4. If Option A is adopted in Step #2: Curve fit all local maxima and minima of 𝑎(𝑡𝑛), 

respectively. If Option B is adopted in Step #2: Locate all local extrema of 𝑎(𝑡𝑛) 
by picking the individual values of 𝑎(𝑡𝑛) with 𝑡𝑛 obtained in Step 3. Afterwards, 
curve fit all maxima and minima of 𝑎(𝑡𝑛), respectively. Average the two 
approximated curves for approximated 𝑎1(𝑡) 

 
5. Curve fit all 𝜙1(𝑡𝑛) identified above to approximate 𝜙1(𝑡). Note that the 

instantaneous frequency 𝜔1(𝑡) can be obtained by numerically differentiating 
𝜙1(𝑡). 

 
6. Construct 𝑥1(𝑡) by 𝑥1(𝑡)  =  𝑎1(𝑡) 𝑐𝑜𝑠 𝜙1(𝑡). 

 
7. Obtain 𝑥2(𝑡)  by using 𝑥2(𝑡)  =  𝑥(𝑡)  −  𝑥1(𝑡). 

 
 This signal decomposition method is named after “index method” as it relies first 
on identifying all time instances corresponding to 𝑡𝑛 with 𝑛 ∈  ℕ0 through identifying 
peaks and valleys in 𝑎(𝑡) or 𝜔(𝑡). Unfortunately, Step #2 involves approximations thus 
introducing errors with both options. Another prominent feature of the index method is to 
rely on the property revealed in Eq. (5.9) to unlock the first component from the sum 
time history. Eq. (5.9) only involves Assumption #1; however, the execution of Eq. (5.9) 
under Step #3 receives errors from Step #2. 
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Figure 5.11: A zoom-in view of a case where the two mono-component signals are both 
exponentially decaying sinusoids. Panel (a) illustrates the relationship between 𝜙(𝑡) and 
𝜙1(t). Panels (b) and (c) indicate simultaneous local maxima and minima for 𝑎(𝑡) and 

𝜔(𝑡) in an approximate sense. 
 

As a comparison and using four Duffing oscillators, Figure 5.12 shows the 
backbones of the first decomposed components and those obtained using HVD 
decomposition technique introduced in Feldman (2006). It is important to highlight that 
these results were obtained by tuning the cutoff frequency of the filter under the HVD 
decomposition for as good performance as possible. For the two ends of a backbone, 
the HVD decomposition seems to lead to a stronger end effect, making the task of valid 
pattern classification much more difficult, especially when automated system 
identification is the goal. In contrast, the proposed method leads to a backbone within a 
“box” where the curves plot nearly on top of one another. This contained manner 
indicates a more predictable data range to facilitate pattern classification. However in 
the middle portion of a backbone, the results from the HVD decomposition seem to 
oscillate less. 
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raw raw 

raw raw 

raw 

raw 

filtered filtered 

filtered 

filtered filtered 

filtered 

filtered 

HVD HVD HVD HVD 

HVD HVD 
HVD 

HVD 

Figure 5.12: Comparison of the backbones obtained from using the proposed and HVD 
methods, where “proposed raw” denotes the raw backbone of 𝑥(𝑡); “proposed filtered” 

denotes the proposed backbone of 𝑥1(𝑡), and “HVD” denotes the backbone obtained by 
using with HVD method (Feldman (2006)). Panels (a1) to (d1) are for the four Duffing 

oscillators. Panels (a2) to (d2) are the zoomed views of Panels (a1) to (d1) and 
displayed as a green box in each of Panels (a1) to (d1), respectively. When using the 
HVD method, the following parameter values are adopted: 𝑓𝑝, the cutoff frequency for 

the filter, is 0.04 for (b1), (b2) and (b3), and 0.02 for the rest, while the number of 
components is chosen to be 2 for all. 

 

5.5 Applications of Backbone to SDOF Structural Dynamics 

5.5.1 Parametric study 
 The following mass-normalized equation of motion for a Duffing oscillator has 
been utilized by Feldman (e.g., Feldman (1994a, 2006, 2011b,a)). It will serve as a 
benchmark equation for this study, where linear viscous damping is assumed: 
 
 �̈�(𝑡)  +  2 휁 (2𝜋𝑓𝑛)�̇� (𝑡)  +  (2𝜋𝑓𝑛)

2𝑥(𝑡)  +  𝛼𝑥3(𝑡)  =  0  
 with initial condition 𝑥(0) > 0 and �̇�(0)  =  0 (5.10) 
 
 The parameters 𝑓𝑛, 휁, 𝛼, x(0) and �̇�(0) are the natural frequency, damping ratio, 
nonlinear stiffness, initial displacement and initial velocity, respectively. Without losing 
generality, we fix �̇�(0)  =  0 throughout this study to restrict the parametric study on the 
initial condition (IC). 
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 To consider meaningful values for 𝑓𝑛 and 휁, references in earthquake 
engineering such as Chopra (2001); Paz (1994) are consulted. Typical values for fn 
range from 0.3 to 22 Hz, damping ratios are summarized in Table 5.2 following Paz 
(1994), while values as high as 25% are considered in other literature Liang et al. 
(2012): 
 
Table 5.2: Maximum values for damping ratio of real-world structures adopted from 
Table A17.5 in Paz (1994) 

Property Steel 
(Welded) 

Steel 
(Bolted) 

Concrete 
(Reinforced) 

Concrete 
(Prestressed) 

Masonry 
(Reinforced) 

Wood 
Trusses 

Wood 
Frames 

ζ (%) 2.0 4.0 5.0 3.0 6.0 9.0 7.0 

 
All backbone curves in Section 5.5.1 are raw backbones, i.e., unfiltered. As 

explained in Feldman (1994a), a backbone curve of Eq. (5.10) intersects the 𝑓-axis at 
the natural frequency of the linear portion of the SDOF system. With 6%, a mid-range 휁 
value, Figure 5.13 indicates how the backbone curves are affected by varying fn values. 
The oscillations shown in the curves are a product of the method and should not be 
ignored in plotting the results. Figure 5.14 confirms that 휁 affects only the “density” of a 
backbone curve, but not its bending behavior at all. An intuitive explanation is that the 
damping ratio affects only the rate of decrease of the response, resulting in a difference 
in the density of the backbone curves. IC affects only the “length” (i.e., starting point) of 
the backbone, but neither the bending behavior nor the “density”. See Figure 5.15. 
 

 
Figure 5.13: Raw backbones with various natural frequency fn values in the Duffing 
oscillator of �̈�(𝑡)  +  2 ×  6% (2𝜋𝑓𝑛)�̇� (𝑡)  + (2𝜋𝑓𝑛)

2𝑥(𝑡)  +  40𝑥3(𝑡)  =  0 with initial 

condition 𝑥(0)  =  10 and �̇�(0)  =  0. 
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5.5.2 Sample result of processing real-world data 
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5.6 Concluding Remarks 
 This chapter has provided a technical overview of the motivations, details and 
significance of the improvements made to the backbone technique used for processing 
free vibration response data for nonlinear system identification and damage detection 
purposes. 
 

6. Inverse Methods 

6.0 Nomenclature 
a  horizontal length of the harped prestressing strands (in.) 

A  cross-sectional area of concrete (in2) 

Aps  cross-sectional area of the prestressing strands (in2) 

Ag   gross cross-sectional area (in2) 

b  width of the concrete cross-section 

dp depth to centroid of the prestressing steel 

E  modulus of elasticity of the concrete (ksi) 

e  eccentricity from centroid of straight prestressing strands to centroid of 
concrete (in.) 

e’  change in height of harped prestressing strands from end to straightening 
point (in.) 

eo  eccentricity from centroid of harped prestressing strands at ends to 
centroid of concrete (in.) 

e1’  change in height of harped prestressing strands from cut end to 
straightening (in.) 

e2’  change in height of harped prestressing strands from the other cut end to 
straightening (e1’> e2’) (in.)  

fse  effective prestress (ksi) 

h  height of the beam (in.) 

I  moment of inertia (in⁴) 

Icr  moment of inertia of a cracked section (in⁴) calculated using Eq. (6.17)  

Ig   gross moment of inertia of the section (in4) 

L   length of the beam (in.) 

Lcut  length of beam after cut (in.) 

Mcr   measured cracking moment from the flexural test (kip-in) 

n  ratio of prestressing steel modulus of elasticity to concrete modulus of 
elasticity 
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Po  effective prestress force (kips) 

wd   dead load at the section under consideration (kips/in or kips/in3) 

x  location under consideration (in.) 

ybot   distance from the bottom of the girder to the centroid of the girder cross-
section (in.) 

∆  measured camber (in.) 

ρp  ratio of area of prestressing steel effective area of concrete (
𝐴𝑝𝑠

𝑏𝑑𝑝
) 

 

6.1 Identification of Flexural Rigidity in Piecewise Manner  

6.1.1 Overview 
This section summarizes why we study the identification of flexural rigidify in a 

piecewise manner, some advances we have made, and how this kind of analysis would 
help the engineering practice of the Oklahoma Department of Transportation (ODOT). 

 
A detailed plan for elastic flexural testing at varying points along the length of the 

“old” girder and girder A was developed for use in estimating the flexural stiffness (EI) 
along the length of the girder. The testing configurations were based on different 
stiffness zones of the girders identified by variation in reinforcement, and were selected 
to be compatible with previous testing performed on the “old” girder and with the 
proposed shear test configurations. The theoretical foundation for the method of 
estimating EI was carefully examined during the planning stage, including the challenge 
of presenting the method as a proper network. A large number of flexural tests were 
conducted on both the old girder and girder A using a number of load points and 
support conditions generating a large amount of useful data for regression analysis. 
Data pre-processing was conducted immediately after each test to check for any 
problems in the data. A number of tests required repeated loading due to torsion 
measured at the load point during the test, problems with the LVDTs, or other issues. 
 
6.1.1.1 Motivations  

The following problem formulation was adopted in Pei et al. (2008): 
 

 ∆= ∫
𝑀(𝑥)𝑚(𝑥)

𝐸𝐼
𝑑𝑥

𝐿

0
  (6.1) 

 

∆
𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 𝐸𝐼

=

∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥

𝐿
5
0

𝐸𝐼1
+
∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥

2𝐿
5
𝐿
5

𝐸𝐼2
+
∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥

3𝐿
5
2𝐿
5

𝐸𝐼3
+
∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥

4𝐿
5
3𝐿
5

𝐸𝐼4
+
∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥
𝐿
4𝐿
5

𝐸𝐼5

 (6.2) 
 

 ∆
𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 𝐸𝐼

=
∑

∫ 𝑀(𝑥)𝑚(𝑥)𝑑𝑥𝑖

𝐸𝐼𝑖

5
𝑖=1  (6.3) 
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∆

𝑃
=
∫ �̅�(𝑥)𝑚(𝑥)𝑑𝑥

𝐿
5
0

𝐸𝐼1
+
∫ �̅�(𝑥)𝑚(𝑥)𝑑𝑥

2𝐿
5
𝐿
5

𝐸𝐼2
+
∫ �̅�(𝑥)𝑚(𝑥)𝑑𝑥

3𝐿
5
2𝐿
5

𝐸𝐼3
+
∫ �̅�(𝑥)𝑚(𝑥)𝑑𝑥

4𝐿
5
3𝐿
5

𝐸𝐼4
+
∫ �̅�(𝑥)𝑚(𝑥)𝑑𝑥
𝐿
4𝐿
5

𝐸𝐼5
 (6.4) 

 

 
∆

𝑃
=

ℎ1

𝐸𝐼1
+

ℎ2

𝐸𝐼2
+

ℎ3

𝐸𝐼3
+

ℎ4

𝐸𝐼4
+

ℎ5

𝐸𝐼5
 (6.5) 

 
The above formulation seems to be straightforward and rational, however the 
involvement of “double regression” makes it questionable theoretically. Specifically, if 
Eq. (6.6) is equivalent to 
 
 𝑦𝑖 = 𝑥𝑖1휃1 + 𝑥𝑖2휃2 + 𝑥𝑖3휃3 + 𝑥𝑖4휃4 + 𝑥𝑖5휃5 (6.6) 
 
and then 
 
 𝑌 = 𝑋𝑇Θ (6.7) 
 
Then, the concerns are as follows: 
 

• What exactly should be the input and output to the system being modelled, 
respectively? 

• If 𝑦𝑖 were indeed an output, why would it depend on both the input 𝑃 and ∆? If 𝑥’s 
were truly inputs, why would these be fixed anyway, i.e., not being measurement-
dependent? 

• The double regression indeed reveals some contradiction for this formulation: In 

the first round of regression to obtain 
𝑃

∆
, the error can be assumed Gaussian. 

How should this error be considered into the implementation of Eq. (6.5)? Or, 
what kind of error distribution is anticipated for Eq. (6.5)? 

 
6.1.1.2 Literature review 

The following writing is a summary of what Dr. Pei learned and understood from 
her work in function approximation using multilayer feedforward neural networks from 
2010 to 2012, which directly inspires this research. 

 
On pp. 384 of Watanabe (2007) under the left column: “If a learning machine is a 
regression model using a parametric function 𝑓(𝑥, 𝑤) 
 

 𝑝(𝑦|𝑥, 𝑤) ∝ 𝑒𝑥𝑝 (−
1

2
(𝑦 − 𝑓(𝑥, 𝑤))2) (6.8) 

 
Then the Fisher information matrix is equal to 
 

 𝐼𝑖𝑗(𝑤) = ∫𝜕𝑖 𝑓(𝑥, 𝑤)𝜕𝑗𝑓(𝑥, 𝑤)𝑝(𝑦|𝑥, 𝑤)𝑞(𝑥)𝑑𝑥 (6.9) 

 
where 𝜕𝑖 =  (𝜕/𝜕𝑤𝑖). The Fisher information matrix is positive definite if and only if 

{𝜕𝑖𝑓(𝑥, 𝑤)} is linearly independent. 
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Table 6.1: Nomenclature used in Amari et al. (2006) 
Parameter Symbol 

Input vector 𝑥  
Output vector 𝑦 
Input-output pair (𝑥 , 𝑦) 

Parameter vector 휃  

Parameter space 𝑀 = {휃 } 

Expectation of y give x ℇ[𝑦] 

Average output function 𝑓(𝑥 , 휃 ) 

PDF of input-output pair 𝑝(y, 𝑥 , 휃 ) =
1

√2𝜋
𝑞(𝑥 )𝑒𝑥𝑝 {−

1

2
(𝑦 − 𝑓(𝑥 , 휃 ))

2

} 

Log likelihood function 𝑙(y, 𝑥 , 휃 ) = 𝑙𝑜𝑔𝑝(y, 𝑥 , 휃 ) = −
1

2
(𝑦 − 𝑓(𝑥 , 휃 ))

2

+ 𝑙𝑜𝑔𝑞(𝑥 )  

Fisher information matrix 𝐺(휃 ) = ℇ [
𝜕𝑙(y, 𝑥 , 휃 )

𝜕휃 

𝜕𝑙(y, 𝑥 , 휃 )
𝑇

𝜕휃 
] 

 
A learning machine is called regular if 𝐼(𝑤) is positive definite for an arbitrary 𝑤. 

If otherwise, then the learning machine is called singular. In a singular learning 
machine, there exists a parameter w such that 𝑑𝑒𝑡 𝐼(𝑤)  =  0. Such a parameter is 
called a singularity of the Fisher information matrix. At a singularity of the Fisher 
information matrix, the likelihood function cannot be approximated by any quadratic 
form of the parameter.” 
 

Also, on pp. 384 of Watanabe (2007) under the right column: “The normal 
distribution ... is regular, whereas its mixture ... is singular. In general, if a learning 
machine has a layered structure or a hidden variable, then it is singular, in general.” 
 
6.1.1.3 New idea 

The first option may be described as follows: If introducing two new index 

variables 𝐼𝑥 and 𝐼𝑦 for the effect of the location of 𝑃 and ∆ on �̅� and 𝑚, respectively, we 

have: 
 

 ∆⏟
𝑦

(𝑃, 𝐼𝑥, 𝐼𝑦⏟    
𝑥 

,
1

𝐸𝐼𝑖⏟
⃗⃗ 

)
𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 𝐸𝐼

=
𝑃⏟
𝑥1

∑ ∫ �̅� (𝑙, 𝐼𝑥⏟
𝑥2

)
𝑖

5
𝑖=1 𝑚(𝑙, 𝐼𝑦⏟

𝑥3

)𝑑𝑙
1

𝐸𝐼𝑖⏟
⃗⃗ 

= 𝑓(𝑥 ) ∙ 휃  (6.10) 

 
which seems like: 
 

 𝑦(𝑥 , 휃 ) = 𝑓(𝑥 ) ∙ 휃  (6.11) 

 
This seems like having a regular Fisher information matrix. HOWEVER, another 

way of thinking hints the possibility of having either a hidden layer or a mixture of 
Gaussian as follows: 
 
Let us cast the “double regression” into a proper mathematical description. This is the 
first stab at this problem: 
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First regression: For a specified pair of 𝐼𝑥 and 𝐼𝑦: 𝑎𝑙𝑙 𝑃′𝑠⏟  
𝑥 

, 
𝑃

∆⏟, 𝑎𝑙𝑙 ∆′𝑠⏟  
𝑦

 (6.12) 

 

Second regression: 𝑎𝑙𝑙 𝐼𝑥′𝑠 and 𝐼𝑦′𝑠⏟          
𝑥 

, 𝑓𝑖𝑣𝑒 𝐸𝐼′𝑠⏟      
⃗⃗ 

, 𝑎𝑙𝑙 
𝑃

∆
′𝑠⏟    

𝑦

 (6.13) 

 
The aforementioned two ways of thinking consistently point to a strong possibility for 
this problem to have a singular Fisher information matrix: 
 

i. Can we draw a network using the above analysis of the first and second 
regressions?  
- I cannot yet. Very likely, however, we will need a hidden layer-kind of structure 

 

ii. If the error of 
𝑃

∆
,  in each pair of 𝐼𝑥 and 𝐼𝑦 of the first regression is Gaussian, then, 

would be all 
𝑃

∆
’s in the second regression a joint Gaussian - the weights can 

actually be considered a parameter to be identified? 
 
Major research questions/tasks may be given as follows: 
 

1. How can we better understand and formulate this problem - with a sound 
mathematical analysis as our foundation? We do not need to be mathematicians, 
but at least we should learn and understand what has been done on this topic so 
that we are guided and our time will be not spent in vain. 

 
2. Based on Item 1 above, how can we better design and conduct (nondestructive) 

static flexural tests? 
 

3. Based on Item 2 above, how can we better process the data and program so as 
to justify the mathematical insights, and possibly, Dr. Jin-Song Pei’s initialization 
vs. commonly used random initialization - This would enable us to do a better job 
in result interpretation. 

 

6.1.2 “Old” Girder 
6.1.2.1 Testing plan 
 
The overall guiding principles are given as follows: 
 

1. Improve the same tests done before. In particular, pay attention to identifying the 
𝐸𝐼 values of the two ends, where there are known damages due to the shear 
tests done in the past. This will be achieved by not only maximizing the flexibility 
but also moving the supports to intentionally introduce some zeros in the 
coefficient matrix. 
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2. Combine this series of tests with the series of cracking tests for productivity in 
data processing (for “before, during and after” a change in the system). This 
explains how the five positions for the loading point were decided: They were 
selected by Dr. Floyd on June 15, 2014 after examining the profile the harped 
strands on the girder. This also explains having LVDTs located at 𝑥 =
 0′, ±4.5′, ±8.5′. 

 
3. Prioritize all possible testing configurations for efficiency and minimization of 

hummer error. All testing configurations can be sorted according to the location 
of the loading point as follows: 

 
Primary tests: when the loading point is located at 𝑥 =  0′. See Figure 6.1 
 
Secondary tests: when the loading point is located at 𝑥 =  ±8.5′. See Figure 6.2 
 
Tertiary tests: when the loading point is located at 𝑥 =  ±4.5′ 
 

 
Figure 6.1: Test setup when the loading point is located at 𝑥 =  0′. 
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Figure 6.2: Test setup when the loading point is located at 𝑥 =  ±8.5′, where running 

through all tests under the same column was efficient. 
 
6.1.2.2 Written notes from testing 

The “old” girder was tested for the stiffness of the girder. The tests were carried 
out by measuring the deflection at several points along the beam with different load 
points and support locations. The girder was placed on steel rollers for the support 
locations for all tests except test 26. For test 26, the girder was placed on concrete 
blocks with 8 in. by 18 in. by 1 in. thick neoprene pads in between the girder and 
concrete block. The beam was loaded to approximately 15,000 pounds, then unloaded 
for each test. BDI model ST-350 strain gauges were placed on the outside of the flange 
near the bottom of the beam on each side under the load point to measure the strain. 
Each test had the strain gauge 1276 at the back side of the beam, and strain gauge 
1282 at the front of the beam. 
 

The ends of the beam had been previously cut leaving it unsymmetrical about the 
original center line. As placed in the load frame, the beam extended 14.25 ft to the left 
(North) and 12 ft to the right (South). A grid drawn on the face of the beam was marked 
at the center line and every 3 in. increment. To the left of the centerline was marked as 
positive distance, and to the right of the centerline was marked as negative distance. 
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LVDTs were placed under the beam along the center of the bottom of the beam to 
measure deflection at specified points. LVDTs C1 and C2 were placed 10.625 inches 
apart and split the center line with roughly 3 inches on each side to the edge of the 
beam. C1 and C2 were placed off of the center line to account for any torsion of the 
beam during loading. Each test was carried out the same way unless otherwise 
mentioned below.  
 

When test 8 was completed, the LVDT R3 at the right support was stuck and did 
not compress or extend. Therefore, the LVDT was lubricated and checked. Test 8a was 
performed to get deflection measurements at the right support. 
 
6.1.2.3 Preprocessing results 
A sample preprocessing result is given in Figure 6.3. 
 

 
Figure 6.3: A sample preprocessed result when the loading point is located at 𝑥 =  0′. 
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6.1.3 Girder A 
The rationale for decision making is given as follows: 
 

1. We follow the principle for testing the old girder for inverse problem in July of 
2014 by moving the supports progressively to intentionally introduce some zeros 
in the coefficient matrix and by measuring both deflection and lifting along the 
length of the girder. 

 
2. Given the massiveness and the ultimate importance for shear capacity of Girder 

A, the number of these tests has to cut down. 
 

3. The division of the 𝐸𝐼 “zones” is not based on possible damage status as for the 
old girder. Rather, it is based on the location of the harping points, and 
reinforcement distribution. In particular, Dr. Floyd wrote on August 6, 2014 that 
“The U1 bars in the web ... extend only 2’ 4”. The U bars in the bottom flange 
extend 1’ 10.5” and the L bars nearest the girder soffit extend 3’ 3” with all 
beginning 2” from the beam end. This would mean the last of the end zone 
reinforcement would be about 3.5 ft from the end of the beam.” The harping 
points were measured to be 4.5’ north and south, however it would be nice to 
stay consistent with how the shear tests would be supported. In addition, the 
division of the 𝐸𝐼 zones is merely an approximation of a continuous 𝐸𝐼 variation 
along the length of the girder. 

 
4. Since there would be no “cracking tests” to match results with and more 

importantly, for efficiency of moving the massive Girder A, two out of the three 
loading points “coincide” with the loading points with those for the future shear 
tests. 

 

6.1.4 Concluding Remarks 
This section has provided a technical overview of the motivations, details, and 

significance of the improvements made to the identification of flexural rigidity in a 
piecewise manner for system identification and damage detection purpose. 
 

6.2 Other Inverse Problems: “Cracking Moment Tests” 

6.2.1 Overview 
Beyond the scope of the proposal, this idea was initiated as a possible method 

for determining effective prestress for the aged bridge girders. It was determined that 
measurement of effective prestress and concrete tensile strength was possible using 
cracking moment tests at two different locations, one within the harped strand portion of 
the girder and one within the central portion of the girder where all strands were at an 
equal eccentricity. The different eccentricities of the strands at these two locations 
would produce different stress distributions within the girders and would, in theory, 
result in different cracking moments. A set of two equations was developed based on 
this idea and the stress distributions at each of the two locations. Plans were originally 
made to perform cracking moment tests on girder A, girder C, and the “old” girder 
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already at Fears Lab to use in determining effective prestress. The plans for all girders 
were modified due to concerns that cracks would cause problems for both the elastic 
flexural tests and subsequent shear tests. The cracking moment tests for girder A and 
girder C were instead incorporated with the measurements taken during shear testing. 
The cracking moment test for the “old” girder was also conducted, but results were 
inconclusive due to existing shear cracks near the ends of the beam. 
 

6.2.2 Small-Scale Beams 
In order to test the feasibility of the overall idea, two small-scale prestressed 

beam specimens were tested multiple times to cracking in the upright and inverted 
orientation to create different stress distributions within the girder and simulate different 
stress conditions within the girder. These beams were available from a previous project 
and were labeled SS1 and SS2. The experimental cracking moment along with section 
properties of the beam can be entered into Eq. (6.14) for the upright beam tests and Eq. 
(6.15) for the inverted beam tests. The two equations can then be solved using the 
tensile strength of the bottom fiber, fr (ksi), to calculate the effective prestress, fse (ksi). 
The effective prestress for the beams could then be compared to the calculate prestress 
in Wendling (2014). The beams tested for the small scale testing correlates to beams 23 
and 24 of Wending (2014). Eq. (6.14) and Eq. (6.15) could also be used to calculate the 
effective prestress of the “old” girder and girder A if the equations accurately calculated 
the effective prestress of a known specimen.  

 

 𝑓𝑟 = −
𝑓𝑠𝑒𝐴𝑝𝑠

𝐴𝑔
−
𝑓𝑠𝑒𝐴𝑝𝑠𝑒𝑦𝑏𝑜𝑡

𝐼𝑔
+

𝑤𝑑𝑥

2
(𝐿−𝑥)𝑦𝑏𝑜𝑡

𝐼𝑔
+
𝑀𝑐𝑟𝑦𝑏𝑜𝑡

𝐼𝑔
 (6.14) 

 

 𝑓𝑟 = −
𝑓𝑠𝑒𝐴𝑝𝑠

𝐴𝑔
+
𝑓𝑠𝑒𝐴𝑝𝑠𝑒(ℎ−𝑦𝑏𝑜𝑡)

𝐼𝑔
+

𝑤𝑑𝑥

2
(𝐿−𝑥)(ℎ−𝑦𝑏𝑜𝑡)

𝐼𝑔
+
𝑀𝑐𝑟(ℎ−𝑦𝑏𝑜𝑡)

𝐼𝑔
 (6.15) 

 
Where: 
Aps =  cross-sectional area of the prestressing strands (in2) 
Ag =  gross cross-sectional area (in2) 
e =  distance between the centroid of the prestressing strands and the 

centroid of the girder (in.) 
ybot =  distance from the bottom of the girder to the centroid of the girder 

cross-section (in.) 
Ig =  gross moment of inertia of the section (in4) 
wd =  dead load per linear inch at the section under consideration 

(kips/in) 
x =  location under consideration (in.) 
L =  length of the beam (in.) 
Mcr =  measured cracking moment from the flexural test (kip-in) 
h =  height of the beam (in.) 

 
Each beam had the same 6 in. by 14 in. by 8 ft dimensions and one 0.6 in. 

prestressing strand 2 in. from the bottom of the beam. Both beams were observed to 
have longitudinal cracks at the as-cast bottom of the beam.  
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Each beam was tested in the upright position (with the strand at the bottom of the 
beam), labeled ‘u’, and the inverted position (with the strand at the top of the beam), 
labeled ‘i’. Each beam was loaded to cracking, unloaded, and then reloaded to reopen 
the crack. The tests where the beam was first cracked were labeled with an ‘a’. The 
tests where the crack was reopened were labeled with a ‘b’ and in one case, where the 
crack was reopened a second time, labeled ‘c’. A BDI Model ST-350 strain gauge 
mounted on each side of the beam near the bottom at midspan was used to measure 
the strain at a crack location. Six wire potentiometers (wire pots) were used to measure 
the deflection of the beam. Two wire pots were placed at midspan and two were placed 
at each third point of the span. A Trans-Tek Model 353 LVDT was clamped to the strand 
and used to measure end slip at each end of the beam. A single load cell was placed 
between the hydraulic ram and the spreader beam in order to measure the load. All 
instruments were connected to and read by a single data acquisition system as the test 
was also intended to test the data acquisition equipment.  

 
 Each beam was loaded with 2.5-kip increments, and the cracks observed were 
marked and labeled with the corresponding load between increments. The load for the 
first beam was applied using third-point loading as shown in Figure 6.4(a). The third 
point loading was a difficult configuration to predict where the first crack would initiate. 
Therefore, the load configuration was changed to a single point load at midspan for the 
second beam to force a crack through the center. The loading configuration for the 
second beam is shown in Figure 6.4(b). For this configuration both rollers were used at 
the single location in order to provide a stable load transfer between the spreader beam 
and the bearing plate. 
 

 
Figure 6.4: Loading configuration of each beam – (a) third point and (b) single point at 

midspan 
 

The first beam was tested first with the prestressing strand at the bottom (SS1-ua 
and SS1-ub). For test SS1-ua, the first crack was observed between the load 
increments of 15 and 17.5 kips. The strain gauges were not covering a crack so they 
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were moved to cover a visible crack between tests SS1-ua and SS1-ub. The crack 
crossed by the strain gauges was located outside the south third point. Test SS1-ub 
was performed in the same manner as SS1-ua to reopen the cracks covered by strain 
gauges. Beam SS2 was first tested with the prestressing strand at the bottom (SS2-ua 
and SS2-ub). Since it was difficult to predict the location where the crack would 
propagate, the strain gauges were both placed on the front side at midspan end to end 
for SS2-ua, as pictured in Figure 6.5. No cracks occurred through the two strain gauges 
during test SS2-ua, so the strain gauges were placed on each side over the same crack 
for test SS2-ub. The strain gauges were not placed properly on the beam for Test SS2-
ub. One strain gauge, labeled 1282, was not bolted onto the mounting tabs tightly 
enough and the mounting tabs for the other strain gauge, labeled 1399, did not stay 
bonded to the beam. Therefore, test SS2-uc the bolts for strain gauge 1282 were 
tightened and the test was run without strain gauge 1399. The tests of the inverted 
beams did not provide useful information due to pre-existing cracks at the top of the 
beams related to the initial prestress. Therefore, the upright beam test results were 
used along with the estimated tensile strength of the concrete to evaluate effective 
prestress. 

 

Figure 6.5: Strain gauge placement for SS2-ua 

Plots of load versus deflection and load versus slip were utilized to determine the 
load at cracking. The two equations developed for the different stress states were then 
used with the measured load and estimated concrete tensile strength to estimate the 
effective prestress. The measured cracking moments were 21.3 kip-ft and 27.1 kip-ft for 
tests SS1-ua and SS2-ua, respectively. These cracking moments corresponded to and 
effective prestress of 87.0 ksi and 131.3 ksi for beams SS1 and SS2, respectively. 
While these values were significantly less than the prestress measured by Wendling 
(2014), they indicated potential for the method. The tests of the small-scale beams also 
allowed for testing and refinement of the data acquisition system. 
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6.2.3 “Old” Girder 
The cracking load and moment for the “old” girder was 119 kips and 684 kip-ft, 

respectively. The load versus deflection is shown in Figure 6.6. When the neoprene 
pads were used, the deflection was determined by normalizing each wire pot with the 
LVDTs from each support and then averaging the two. The thin gray line in Figure 6.6 is 
the data recorded by the data acquisition system, and the thick black line is the 
deflection observed visually using a ruler and laser level during testing.   
 

The cracking moment for “old” girder was higher than expected. The cracks from 
previous shear tests (Pei et al., 2008) at the ends of the girder re-opened before flexural 
cracks were observed at the midspan of the girder, resulting in a higher applied load to 
cause flexural cracking. The expected cracking moment for the girder was 500 kip-ft 
determined analyzing stresses based on estimated effective prestress and concrete 
tensile strength. The effective prestress estimated using the higher cracking moment 
was significantly larger than larger than the 270 ksi tensile strength of the strand 
indicating that this value was not correct, while the value of effective prestress used to 
calculate the estimated cracking moment was 162 ksi. 

 

 
Figure 6.6: Load versus deflection at midspan for the cracking moment of the “old” 

girder 
 

6.2.4 Girder “A” 
For test A1, the instrumentation intended to measure the deflection under the 

load point malfunctioned and did not provide useful data. Therefore, the cracking load 
could not be determined from data recorded by the data acquisition system and only the 
observed value was available. The cracking load was observed at approximately 170 
kips which correlates with a cracking moment of 760 kip-ft. 
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The load versus deflection plot for test A2, shown in Figure 2.33, was used to 
identify the cracking moment from test A2. The cracking load determined from the point 
where the slope changes on the plot was 190 kips. The value for cracking load 
determined from the load-deflection results was the same as the observed cracking 
load. The corresponding cracking moment was 790 kip-ft.   

 
The initial prestress for girder A calculated from the 28.8 kips required strand 

tension given on the plans obtained from ODOT was 188 ksi. The values obtained from 
the measured cracking moments from tests A1 and A2 and estimated concrete tensile 
strength based on the relationship with the compressive strength of cores taken from 
the girder were 183 ksi and 197 ksi, respectively. This can be partially explained by a 
larger concrete tensile strength in the actual girder than that estimated using the 
concrete compressive strength measured using cores taken from the girder. While the 
actual values obtained were inconclusive, they showed merit for using the method. 
 

6.2.5 Girder “C” 
 The cracking moments for tests C1 and C2 were determined from the load 
versus deflection relationships and confirmed using visual measurements as described 
for girder A. The cracking loads for these two tests were 160 kips and 150 kips, and the 
corresponding cracking moments were 922 kip-ft and 1017 kip-ft. These cracking 
moments result in an estimated effective prestress of 129.5 ksi and 144.5 ksi based on 
a concrete tensile strength estimated using the compressive strength of the cores. The 
initial prestress for girder C listed on the plans provided by ODOT was the same 188 ksi 
as for girder A. The values determined using the measured cracking moments were in 
the same range as the 150 ksi determined using the AASHTO LRFD method. 
Differences between the two values are related to the fact that tensile strength may not 
be constant across the entire girder, may differ from the estimated value, and that the 
first observed cracks were due to shear and not flexure. 
 

6.3 Other Inverse Problems: “Camber Measurements” 

6.3.1 Overview 
Camber was measured for both girder A and the “old” girder for use in estimating 

the effective prestress. Before the camber of each girder was measured, the girder was 
marked where the camber measurements would be taken. Several methods for 
measuring camber were evaluated. The methods chosen for this purpose included 
using a taut string and using surveying equipment. The string was passed under the 
girder and anchored at the supports to provide a baseline at the elevation of the beam 
supports. Measurements between the girder soffit and the string were then taken to be 
the camber at each location. A steel ruler with gradations of one sixteenth of an inch 
was used to measure the camber. The ruler was held with the zero end flush to the 
bottom of the girder, and the measurement was taken from the top of the string. The 
camber was also measured using a surveying level and a survey rod consisting of a 
scale attached to a carpenter’s square. A short bubble level was attached to the square 
to align the rod in one axis vertically while the square was used to align the rod in the 
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other direction by placing the horizontal leg flush with the soffit of the girder at the 
desired measurement location. 

 
The survey level was placed as closely to equidistant from each location as 

possible. The tripod was leveled using several bubble levels on the instrument. Once 
the instrument was leveled, the survey rod was placed in the first location. The survey 
rod was placed with the square flush to the bottom of the girder and the level was used 
to straighten the square and ensure that it was vertical. The surveyor looked through the 
lens at the crosshairs and placed them on the survey rod. The horizontal line 
corresponded to a number on the scale, which was recorded for each location. The end 
values were then used to create a zero line between the two supports and normalize the 
measurements. 

 
Significant difficulties were encountered using the survey method for the “old” 

girder due to limited space and sight distances within the lab. The string method was 
therefore used for the remaining measurements. Difficulties were encountered for both 
methods for girder A due to the fact that the soffit of the girder was very uneven. The 
described method was adjusted to correct this problem by moving the measurement 
reference to the point where the top flange intersected the beam web. 

 
The prestressing strand configurations were used to develop relationships 

between the prestress force and camber of each girder. The asymmetrical strand profile 
of the “old” girder and creep effects caused substantial difficulty in obtaining a 
reasonable estimate prestress force from the camber measurements. 
 

6.3.2 Small-Scale Beams 
The camber for each small-scale beam was measured using the string method. 

The camber measurements were then used along with PCI (2010) equations for camber 
including creep coefficients (Eq. 6.16) to determine the effective prestress.   

 

 ∆= 2.45 (
𝑓𝑠𝑒𝐴𝑝𝑠𝑒𝐿

2

8𝐸𝐼𝑐𝑟
) − 2.7 (

5𝑤𝑑𝐴𝐿
4

384𝐸𝐼𝑐𝑟
) (6.16) 

 
where: 
∆ =  measured camber (in.) 
fse =  effective prestress (ksi) 
Aps =  cross-sectional area of the prestressing strands (in2) 
e =  eccentricity from centroid of prestressing strands to centroid of 

concrete (in.) 
L =  length of beam (in.) 
E =  modulus of elasticity of the concrete (ksi) 
Icr =  moment of inertia of a cracked section (in⁴) calculated using Eq. 

(6.17)  
wd =  dead load per cubic inch at the section under consideration (k/in³) 
A =  cross-sectional area of concrete (in2) 
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 𝐼𝑐𝑟 = 𝑛𝜌𝑝(1 − 1.6√𝑛𝜌𝑝)(𝑏𝑑𝑝
3) (6.17) 

 
where: 
n =  ratio of prestressing steel modulus of elasticity to concrete 

modulus of elasticity 

ρp =  ratio of area of prestressing steel effective area of concrete (
𝐴𝑝𝑠

𝑏𝑑𝑝
) 

b =  width of the concrete cross-section 
dp =  depth to centroid of the prestressing steel 

 
The camber measurements taken from specimen SS2, and representative of 

both beams, are shown in Table 6.2. An effective prestress of 117.4 ksi was determined 
using the camber measurements and Eq. (6.16). This value is significantly less than the 
effective prestress of 154 ksi measured in Wendling (2014). Using the camber equation 
and 154 ksi for the effective prestress, the deflection calculated is 0.381 in. which is 
more than double the measured camber. This result may be partially due to differences 
in creep coefficient.  

 
Table 6.2: Camber Measurements for the Small-Scale beam, SS2 at Various Locations 
Along the Beam Length 

Person 
North Support 

(in.) 
North Third 

(in.) 
Midspan 

(in.) 
South Third 

(in.) 
South Support 

(in.) 

Person 1 0 0.125 0.156 0.125 0 

Person 2 0 0.156 0.188 0.156 0 

Average 0 0.141 0.172 0.141 0 

 

6.3.3 “Old” Girder 
Measurements were taken at six locations for the “old” girder, shown in Figure 

6.7, in order to measure the camber along the length of the girder. The six locations 
were chosen to be the two supports, the location where the harping of the strands 
ended, the center of the girder, and the center of the section between the harping 
points. 

 

 
Figure 6.7: Locations for camber measurements 

 
The equation used for calculating the effective prestress using the camber 

measurements, Eq. (6.18), was derived from the PCI Handbook (PCI, 2010). The 
multipliers are creep coefficients to take into account the change of camber over time. 
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The cut portion of the equation was modified to take into account the girder being cut 
unsymmetrically after years of service. The camber measurements are shown in Table 
6.3 for the string method and the level method with the normalized values in Table 6.4. 
For precision and to eliminate bias by the individual taking the measurements, two 
individuals took measurements of the camber of the girder.  

 
 ∆= ∆𝑤𝑖𝑡ℎ 𝑑𝑒𝑐𝑘 + ∆𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑒𝑐𝑘 𝑎𝑛𝑑 𝑒𝑛𝑑𝑠 𝑐𝑢𝑡 

 = [2.2 (
𝑃𝑜

8𝐸𝐼
) (𝑒𝐿2 + 𝑒𝑜𝐿

2 + 𝑒′(𝐿2 − 1.33𝑎2)) − (2.4𝐴𝑔𝑖𝑟𝑑𝑒𝑟 + 2.3𝐴𝑑𝑒𝑐𝑘) (
5𝑤𝑑𝐿

4

384𝐸𝐼
)]
𝑤/ 𝑑𝑒𝑐𝑘

 (6.18) 

+ [(
𝑃𝑜
8𝐸𝐼

) (𝑒𝐿2 + 𝑒𝑜𝐿
2 + 𝑒′(𝐿2 − 1.33𝑎2)) − (𝐴𝑔𝑖𝑟𝑑𝑒𝑟 + 𝐴𝑑𝑒𝑐𝑘) (

5𝑤𝑑𝐿
4

384𝐸𝐼
)

− (
𝑃𝑜
12𝐸𝐼

) (
𝑒1
′(𝐿𝑐𝑢𝑡 − 𝑎1)[0.75𝐿𝑐𝑢𝑡

2 − (𝐿𝑐𝑢𝑡 − 𝑎1)
2]

𝑎1

−
𝑒2
′(𝐿𝑐𝑢𝑡 − 𝑎2)[0.75𝐿𝑐𝑢𝑡

2 − (𝐿𝑐𝑢𝑡 − 𝑎2)
2]

𝑎2
) − (

𝑃𝑜𝑒𝑜,1𝐿𝑐𝑢𝑡
2

8𝐸𝐼
) − (

𝑃𝑜𝑒𝐿𝑐𝑢𝑡
2

8𝐸𝐼
)

+ (
5𝑤𝑑𝐴𝑔𝑖𝑟𝑑𝑒𝑟𝐿𝑐𝑢𝑡

4

384𝐸𝐼
)]
𝑐𝑢𝑡

 

 
Where: 
∆ =  measured camber (in.) 
Po =  effective prestress force (kips) 
E =  modulus of elasticity of the concrete (ksi) 
I =  moment of inertia (in⁴) 
e =  eccentricity from centroid of straight prestressing strands to 

centroid of concrete (in.) 
eo =  eccentricity from centroid of harped prestressing strands at ends 

to centroid of concrete (in.) 
e’ =  change in height of harped prestressing strands from end to 

straightening point (in.) 
L =  length of beam (in.) 
a =  horizontal length of the harped prestressing strands (in.) 
wd =  dead load per cubic inch at the section under consideration (k/in³) 
A =  cross-sectional area of concrete (in²) 
e1’ =  change in height of harped prestressing strands from cut end to 

straightening (in.) 
e2’ =  change in height of harped prestressing strands from the other cut 

end to straightening (e1’> e2’) (in.)  
Lcut =  length of beam after cut (in.) 
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Table 6.3: Camber Measurements for the “old” Girder Using the String Method at 
Locations Corresponding to Figure 6.7 

Person LS (in.) LH (in.) MS (in.) MH (in.) RH (in.) RS (in.) 

1 0 0.813 1.125 1.125 0.500 0 

2 0 0.813 1.125 1.125 0.563 0 

Average 0 0.813 1.125 1.125 0.532 0 

 
Table 6.4: Camber Measurements for the “old” Girder Using the Level Method at 
Locations Corresponding to Figure 6.7 

Person LS (in.) LH (in.) MS (in.) MH (in.) RH (in.) RS (in.) 

1 0 0.735 1.032 1.029 0.637 0 

2 0 0.610 0.844 0.842 0.449 0 

Average 0 0.673 0.938 0.936 0.543 0 

 
Unlike the string method, the two sets of measurements for the level method 

differ by about one to two tenths of an inch. Comparing the normalized camber 
measurements to the string measurements, Person 1 had better consistency for the 
camber measurements. The effective prestress determined using the camber 
measurements was 301 ksi for the string method and 259 ksi for the level method. The 
tensile strength for the strands is 270 ksi and is not possible for the effective prestress 
to be greater than ultimate strength. If an estimated prestress of 162 ksi was determined 
using prestress loss prediction methods, the expected camber was 0.504 in. This 
deflection is approximately half of the measured values and indicates that the 
modifications for creep may not effectively account for behavior over time. The damage 
and modifications made to this girder likely also contributed to the large discrepancy. 
 

6.3.4 Girder “A” 
Camber measurements for girder A were taken at a number of grid points along 

the length of the beam in addition to midspan. The camber could not be accurately 
measured from the bottom of the girder because the bottom surface was determined to 
be uneven. The camber was determined using a chalk line placed on the girder. At each 
end of the girder, the string was held at the top of the web above the support and 
plucked to leave a chalk line on the girder. The camber was measured from the chalk 
line to the girded line. Eq. (6.19), from PCI (2010) along with corresponding creep 
coefficient multipliers, was used along with the midspan camber measurements to 
estimate the effective prestress.   
 

 ∆= 2.2 (
𝑃𝑜

8𝐸𝐼
) (𝑒𝐿2 + 𝑒𝑜𝐿

2 + 𝑒′(𝐿2 − 1.33𝑎2)) 

 −(2.4𝐴𝑔𝑖𝑟𝑑𝑒𝑟 + (2.3−1)𝐴𝑑𝑒𝑐𝑘 + 𝐴𝑑𝑒𝑐𝑘,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) (
5𝑤𝑑𝐿

4

384𝐸𝐼
) (6.19) 

 
where: 
∆ =  measured camber (in.) 
Po =  effective prestress force (kips) 
E =  modulus of elasticity of the concrete (ksi) 
I =  moment of inertia (in⁴) 
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e =  eccentricity from centroid of straight prestressing strands to 
centroid of concrete (in.) 

eo =  eccentricity from centroid of harped prestressing strands at ends to 
centroid of concrete (in.) 

 
Table 6.5 displays the camber measurements taken before testing. For precision 

and to eliminate bias by the individual taking the measurements, two people took 
camber measurements on the girder. The calculated effective prestress for the girder 
was found to be greater than the tensile strength of the prestressing strands. If the 
effective prestress of 167 ksi determined using the AASHTO methods for prestress loss 
is used, the deflection should be 0.138 in. which is seven times less than the measured 
deflection. The large difference in predicted and measured camber and effective 
prestress are due to inaccuracy in creep coefficients and errors in the methods used. 
The method used to measure the camber was difficult to keep consistent due to 
difficulty in monitoring the tension of the string.  

 
Table 6.5: Camber Measurements for Girder A at Various Grid Point Locations (all 
values in in.) 

Person N11.5 N7.5 N4.5 N4 MS S4 S4.5 S7.5 S11.5 

1 0.281 0.625 0.813 0.844 0.938 0.750 0.719 0.531 0.438 
2 0.344 0.625 0.781 0.750 0.875 0.750 0.688 0.531 0.281 

Average 0.313 0.625 0.797 0.797 0.907 0.750 0.704 0.531 0.359 

 

7. Small-Scale Section Testing 

7.1 Overview 
Eight approximately half-scale prestressed beams designed to mimic the 

configurations of girder A and girder C were cast to provide additional information on the 
behavior of the composite bridge section compared to the individual girders. Shear tests 
were conducted on individual beam specimens with a composite deck section matching 
girder A and girder C and a scaled bridge section consisting of 4 beam lines with a 
composite deck cast between all beams was constructed and tested. All beams were 
simply supported on neoprene bearing pads with a single point load applied directly 
over the girder web for final shear testing similarly to the tests of girder A and girder C. 
The composite bridge section was tested using a specially built load frame on the Fears 
Lab strong floor as it was too wide for the typical load frames. Elastic tests were 
conducted first with the single point load applied at various locations to examine 
deflection and load transfer across the composite section. The elastic tests were 
followed by a test to failure with the single point load placed directly over the first interior 
girder. The individual small-scale beam tests will be used to connect the behavior of 
girder A and girder C to the behavior of the small-scale bridge section in order to gain 
insight into the behavior of a full-scale bridge. 
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7.2 Beam Design and Construction 

7.2.1 Beam Specimens 
A comparative analysis of reinforcement configurations was conducted using an 

approximately half-scale (22.5 in. deep) AASHTO Type II girder cross-section. Multiple 
reinforcement configurations were considered in order to identify a prestressing strand 
arrangement which would reasonably replicate the stress state in each of the two girder 
designs examined in the project (girders A and C). A difference in in-service stresses 
between the actual girders and the test specimens of less than 20% was targeted in the 
comparative analysis. Two designs resulted, one corresponding to each original 
reinforcement configuration. While using small-diameter prestressing strands would 
have been ideal, the configuration of the prestressing bed hole pattern limited the 
prestressing reinforcement to only 0.5 in. or 0.6 in. diameter prestressing strands. The 
compressive stress in service was deemed to be the most important parameter for the 
design and priority was placed on matching this value to the original girders. The stress 
state of girder A could be best replicated using two 0.5 in. special prestressing strands 
tensioned to 186 ksi and the girder C section using two 0.6 in. prestressing strands 
tensioned to 202.5 ksi. In both cases the strands were located 4 in. from the bottom of 
the specimen. These configurations resulted in a difference in calculated compression 
stresses between the full-scale and small-scale designs of 0.8% and 3.1% for the girder 
A and girder C designs, respectively. The differences in calculated tensile stress were 
considerably higher, 53% and 77%.  

 
The small scale specimens were analyzed for strength using the same methods 

described in Section 3.2. The shear reinforcement configuration for the test specimens 
was scaled to represent that of the original girders based on the percentage contribution 
of concrete and steel to shear strength. For the original girder A and girder C 
configurations concrete contributed 30% of the shear strength and steel 70%. The shear 
reinforcement configuration of the scaled beams was then analyzed and adjusted to 
provide similar shear capacity and ratio of concrete contribution to steel contribution 
based on the chosen prestressing strand configurations. Shear reinforcement consisted 
of No. 3 Z-bars spaced as shown in Figure 7.1, which resulted in a concrete contribution 
to total shear strength of 26% and steel contribution of 74% for the girder A design and 
19% concrete contribution and 81% steel contribution for the girder C design. Both 
designs were examined at the quarter span point and d/2 when calculating these ratios. 
Uncoated reinforcing steel was chosen to match the original girders.  
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Figure 7.1: Shear reinforcement spacing and details for small-scale beam designs 

 
A similar concrete mixture to the one developed for the small-scale bond testing 

was identified for use in beam construction, and is shown in Table 7.1. It had a targeted 
compressive strength of 4000 psi at one day of age and 6000 psi at 28 days. Wooden 
platforms and steel formwork sides were constructed for casting the beam specimens. 
The two steel prestressing abutments attached to the strong floor at Fears Lab (Figure 
7.2) were used for tensioning the prestressing steel and the length of the prestressing 
bed allowed for casting two beams at one time. In the days preceding each beam 
casting, one side of the formwork was put in place and all reinforcing steel was tied in 
place, as shown in Figure 7.3. The prestressing strands were then tensioned on the day 
of beam casting. Each set of two beams was cast using a single batch of concrete 
mixed using equipment and materials at Fears Lab. Slump, temperature, air content and 
unit weight were measured at the time of casting and 4 in. by 8 in. cylinders were made 
for compressive strength testing at 1, 7, and 28 days of age. An example of completed 
beam specimens is shown in Figure 7.4. The specimens were designated by an 
identifier matching the large scale girder (A or C) that they represented, and a number. 
Six specimens corresponding to girder A were cast and two specimens corresponding 
to girder C. The fresh concrete properties and concrete compressive strengths 
measured for each beam at one and 28 days are shown in Table 7.2. 
 
Table 7.1. Mix Design Used for Scaled Beam Sections 

Material Quantity 

Cement (lb/yd3) 851 
Sand (lb/yd3) 1459 
Rock (lb/yd3) 1372 
Water (lb/yd3) 315 

w/c 0.37 
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Figure 7.2: (a) View along prestressing bed, and (b) live end prestressing abutment 
 

 
Figure 7.3. Reinforcing steel and formwork in place before beam casting 

 

 
Figure 7.4: Example of completed beam specimen (A1) 
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Table 7.2. Concrete Properties for the Scaled Beam Sections 
Specimen 

ID 
Slump 
(in.) 

Temp.  
(°F) 

Air  
(%) 

Unit Weight 
(lb/ft3) 

f’ci  
(psi) 

f’c  
(psi) 

A1 9.5 65 2.6 148.6 4190 6700 
A2 9.5 69 2.7 147.7 4360 6720 
A3 9.75 72 2.3 148.4 4200 6250 
A4 9.0 76 2.7 147.1 4440 6520 
A5 9.5 80 2.3 147.3 4250 5930 
A6 9.0 82 2.4 147.5 4300 6100 
C1 9.25 79 2.8 148.0 4390 5820 
C2 9.75 80 2.4 148.8 4170 5700 

 

7.2.2 Individual Beam Tests 
After the scaled girders reached 28 days of age, a composite deck section 

matching the configuration of either girder A or girder C was cast on top of two of the 
beams with the corresponding design. The girder A design included a 4.25 in. thick deck 
section as wide as the top flange and the girder C design included a 4.25 in. thick by 18 
in. wide deck section with both end and intermediate diaphragm sections as wide as the 
deck section. The interface shear reinforcement was carefully checked to ensure 
adequate load transfer and composite action. The concrete mix design used for the 
deck sections and the subsequent scale bridge deck was a standard ODOT class AA 
mix design obtained from Dolese Bros. It achieved a compressive strength of 2630 psi 
at one day and 4450 psi at 28 days. Overhanging formwork, shown in Figure 7.5 was 
constructed for each beam and the concrete was placed using a bucket and the Fears 
Lab overhead crane. A completed beam section is shown in Figure 7.6. 

 

 
Figure 7.5: (a) Formwork and reinforcing steel for individual girder C sections and (b) 

formwork and cast concrete for individual scale girder A sections  
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Figure 7.6: Completed scale girder C section showing end and midspan diaphragm 

sections 
 
 Each individual beam section was tested in shear with a single point load at 
locations intended to provide similar configurations to girders A and C and to limit the 
effects of bond loss on the shear tests due to the large diameter of the prestressing 
strands compared to the section size. The load testing arrangement used for each 
beam is shown in Figure 7.7. Applied load was measured using a 100 kip capacity load 
cell placed beneath the load point, deflection was measured using two wire 
potentiometers placed beneath the load point, LVDTs were placed on the strands at 
both ends to monitor any strand slip during the tests, and a single BDI strain gauge was 
placed on the bottom flange at the load point. Load was applied in 5 kip increments until 
cracking occurred, after this load was applied at 2 kip increments. Cracks were marked 
on the west side of the girder after each load increment. The beams were simply 
supported on steel rollers and load was applied through a steel plate placed on a bed of 
sand to limit the effect of imperfections on the beam surface. In all tests, the supports 
were placed 4 in. from each end for a total span length of 17 ft 4 in. 
 

 
Figure 7.7: Testing setup for scaled individual beam sections 
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7.2.3 Scale Bridge  
 An approximately half-scale composite bridge section was designed to mimic the 
full bridge section on the plans provided by ODOT. It consisted of four girder A design 
beam lines and a 4.25 in. thick deck. The bridge had a total length of 18 ft and a beam 
spacing of 3 ft – 10 in. resulting in a total width of 13.5 ft including a 1 ft overhang. The 
reinforcing steel in the deck was designed to mimic the original bridge configuration and 
transfer the expected loads between girders. End and midspan diaphragms were 
included and the beams were tied together through the diaphragms using threaded 
rods. The diaphragm reinforcement is shown in Figure 7.8. 
 

 
Figure 7.8: Diaphragm reinforcement for scaled bridge section and U-stirrup detail 

 
 The scale bridge beams were supported on neoprene bearing pads placed on 
concrete block supports. Formwork was built between the beams using plywood to 
mimic expected construction methods at the time the actual bridge was built (see 
Figures 7.9 and 7.10). The reinforcing steel was placed and held in place using plastic 
rebar chairs (Figures 7.10 and 7.11). The same class AA concrete provided by Dolese 
Bros. was used for casting the deck on the bridge section. Concrete was cast using a 
concrete bucket, vibrated, screeded and given a broom finish. Construction of the deck 
is shown in Figure 7.12 and the completed section is shown in Figure 7.13. The bridge 
deck was cured under wet burlap and plastic for seven days, as shown in Figure 7.14. 
The compressive strength of the deck concrete was 2030 psi at one day of age and 
4190 psi at 28 days. 
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Figure 7.9: Initial framing for scaled bridge deck formwork 

 

 
Figure 7.10: Completed scaled bridge deck formwork and rebar placement 
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Figure 7.11: Close-up of scaled bridge deck rebar placement 

 

 
Figure 7.12: Scaled bridge deck construction 
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Figure 7.13: Scaled bridge deck section after concrete finishing 

 

 
Figure 7.14: Plastic and burlap used for curing concrete deck on scaled bridge section 

 
 A specially designed steel frame was built over the scale bridge section as the 
frames already available at Fears Lab were too narrow. The frame and completed 
bridge is shown in Figure 7.15. This frame was selected over the initial idea of using 
single anchors to the strong floor and a spreader beam as it allowed more flexibility in 
elastically loading the bridge specimen. The bridge and frame were arranged so that the 
load could be applied at the quarter span point.  
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Figure 7.15: Load testing frame over the scaled bridge section 

 

7.3 Results of Individual Beam Tests 

7.3.1 Test C1s 
Test C1s was performed at an a/d ratio of 3.0, corresponding to the a/d ratio of 

full scale girder test C1. This a/d ratio resulted in a load point located at a distance of 
71.5 in. from the end of the girder. Load was increased in 5 kip increments until cracking 
occurred. Initially the girder was quite stiff, with only 0.13 in. of deflection when flexural 
cracking occurred at a load of 41.5 kips (Figure 7.16). This point is marked on the load-
deflection plot given in Figure 7.17, and a change in slope can be noticed. This point is 
also corroborated by a rapid reduction in strain measured by the strain gauge north of 
the crack. When cracking occurred, the strain in the bottom flange was approximately 
330 microstrain.  

 
After this initial flexural crack, load was increased at 2 kip increments. At a load 

of 46 kips, shear cracks formed near the supports (highlighted in red in Figure 7.18). 
The formation of these shear cracks led to strand slip of 0.02 in. for one strand on the 
south end of the beam. Slip increased from this point to the end of the test, resulting in a 
maximum slip of 0.52 in. and 0.72 in. for the strands on the loaded end. The test was 
continued to a maximum applied force of 62.3 kips, at which point the strand slip 
prevented any increase in load.  

 
The flexural capacity based on strain compatibility at this section was 204.8 k-ft 

for a point load of 54 kips. The shear capacity using the ACI method at this section was 
50.7 kips, which corresponds to a point load of 74 kips. The predicted capacity was 
exceeded for flexure despite the large amount of recorded slip. The center diaphragm 
appeared to arrest cracking near midspan, but it is difficult to make definite conclusions 
since the tests of scaled girders without diaphragms were for a slightly different design. 
Differences in diaphragm construction over the years may reduce the applicability of 
any conclusions drawn from these tests as well. 



142 
 

 
Figure 7.16: Initial flexural crack at 41.5 kips. (Note that the load point is at the center of 

the strain gauge attached to the bottom flange) 
 

 
Figure 7.17: Load versus deflection plot for test C1s 
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Figure 7.18: Final cracking in test C1s (initial shear cracks highlighted with red and 

black dashed lines) 
 

7.3.2 Test C2s 
Test C2s was performed at an a/d ratio of 2.4, corresponding to the quarter-point 

of the girder. This location was chosen since this is the location where the scale bridge 
would be tested. The load point was located at a distance of 54 in. from the end of the 
girder. As with test C1s, little deflection was measured before cracking. A large shear 
crack formed at the support at a load of 40.5 kips and 0.09 in. of deflection. This point is 
marked on the load-deflection plot given in Figure 7.19, and a drop in load occurred due 
to strand slip. When this shear crack formed, slip of 0.031 and 0.037 in. was observed 
for the strands on the loaded end. The strain before cracking was 239 microstrain at the 
load point. The measured strain reduced slightly after each new crack formed.  

 

 
Figure 7.19: Load versus deflection for test C2s 
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Because of the proximity of the initial shear cracks to the support, slip increased 
with every load increment and prevented the addition of load. The maximum load 
reached in this test was 42.4 kips. The test was stopped when some crushing was 
observed in the deck. The maximum deflection reached was 1.83 in. The cracking 
pattern from this test is shown in Figure 7.20, with the initial cracks highlighted in red. 
Bond issues prevented the girder from reaching its estimated capacity. The girder’s 
nominal moment capacity was 204.8 k-ft based on moment capacity (corresponding to a 
point load of 64.7 kips). The shear capacity by the ACI method was 63.2 kips 
corresponding to a point load of 82 kips. Because slip began with the initial shear 
cracking, the capacity of the girder was reduced. Unfortunately, this slip is a limitation of 
the dimensions of the test. Since the development length is roughly 92 in., the short 
embedment length required for this test influenced the bond behavior. Additionally, it is 
possible the stiffness of the end diaphragm may have influenced the test. The initial 
cracking occurred in shear at a very low deflection. It is possible the diaphragm 
contributed to the stiffness of the end region. Tests of girders A1s and A2s helped to 
determine the influence of the diaphragms on beam behavior, but again were for a 
slightly different beam design which reduces the applicability of the comparison. 
Another possibility is that the increased stiffness due to the available deck influenced 
the shear behavior. Both of these possibilities will be explored further.  

 

 
Figure 7.20: Girder C2s cracking (initial shear cracks highlighted) 

 

7.3.3 Test A1s 
 Test A1s was performed at an a/d ratio of 2.4, corresponding to the quarter-point 
of the girder similarly to test C2s. This location was chosen since this is the location 
where the scale bridge would be tested, and because test C2s was performed at the 
same location. The load point was located at a distance of 54 in. from the end of the 
girder. Initial flexural cracking under the load point occurred at a load of 34.3 kips and 
0.14 in. of deflection. This point is marked on the load-deflection plot given in Figure 
7.21, and a drop in load occurred shortly after due to strand slip. Initial slip of roughly 
0.025 in. was observed in both strands on the loaded end after cracking occurred. The 
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strain before cracking was 251 microstrain at the load point immediately prior to 
cracking. The measured strain reduced slightly after each new crack formed.  
 

The final behavior of the beam is shown in Figure 7.22. Extensive shear and 
flexural cracking was observed, and there was some ductility remaining after initial 
cracking and slip. Crushing in the deck occurred at the final load increments. By the end 
of the test, a maximum slip of 0.64 and 0.66 in. was measured in the strands at the 
loaded end. The maximum point load for flexure at this location was 65 kips based on 
strain compatibility compared to a maximum load in the test of 44.8 kips. This is a 
difference of 31 percent. This difference can be attributed to slip related to the 
embedment length and presence of shear cracks in the transfer zone. The estimated 
shear capacity corresponded to a point load of 83.5 kips by the ACI method.  
 

 
Figure 7.21: Load versus deflection for test A1s 

 
 



146 
 

 
Figure 7.22: Girder A1s cracking patterns, initial cracking shown by red and black 

dashed line 

7.3.2 Test A2s 
 Test A2s was performed at an a/d ratio of 3.0, the same as test C1s. The load 
point was located at a distance of 71.5 in. from the end of the girder. Initial flexural 
cracking under the load point occurred at a load of 26.7 kips and 0.15 in. of deflection. 
This point is marked on the load-deflection plot given in Figure 7.23, and led to a 
change in slope of the load-deflection plot. Initial slip of only 0.004 in. was observed in 
both strands on the loaded end after cracking occurred. The strain before cracking was 
241 microstrain at the load point immediately prior to cracking. The measured strain 
reduced slightly after each new crack formed. Slip increased to 0.165 and 0.175 in. at 
the loaded end at a load of 44.8 kips, this location is noticeable on the graph when the 
load drops off sharply. After this increase in slip, no more load could be applied. At this 
load, large shear cracks formed near the end of the beam (Figure 7.24). 
 

The final behavior of the beam is shown in Figure 7.24. Extensive shear and 
flexural cracking was observed, and there was some ductility remaining after initial 
cracking. The slip and shear cracking at 44.8 kips reduced the load carrying ability of 
the girder. Crushing in the deck was not observed but some shear cracks oriented 
themselves horizontally along the top of the deck. By the end of the test, a maximum 
slip of 0.59 and 0.61 in. was measured for the strands at the loaded end. The maximum 
point load for flexure at this location was 55.3 kips based on strain compatibility 
compared to a maximum load in the test of 44.8 kips. This is a difference of 18.6 
percent. This difference can be attributed to slip related to the embedment length and 
shear cracking in the transfer zone. The estimated shear capacity corresponded to a 
point load of 74 kips by the ACI method.  
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Figure 7.23: Load-deflection for test A2s 

 

 
Figure 7.24: Final cracking for specimen A2s, initial flexural crack shown by a red and 
black dashed line and highlighted by a square, shear cracking at 44.8 kips shown with 

blue solid lines and highlighted with a circle 
 

7.4 Results of Scale Bridge Test 
The destructive test of the scale bridge in Fears Lab was performed on 

Thursday, December 8, 2016 at 11:00 AM. LVDTs and wire potentiometers were used 
to measure deflection at the load point under each girder. LVDTs were used to capture 
small movements and the wire pots were used to measure deflections greater than the 
stroke of the LVDTs. LVDTs were used to monitor bearing pad deflection at each 
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support location. A surface strain gauge was attached to two end diaphragms and one 
middle diaphragm. Analog dial gauges were used to monitor slip at the strands. These 
dials were accurate to 0.0001 in. and had a range of 0.05 in. An overview of the sensor 
layout it shown in Figure 7.25. Similarly to the individual scale sections, load was 
applied in 10 kip increments until initial cracking then load increments were reduced to 2 
kips.  
 

The connection between the end diaphragms and girders was slightly cracked at 
the beginning of the test. The diaphragms were tied together with a number 4 bar and 
lapped to threaded rods that attached with nuts to the outside girders. The concrete at 
these interfaces was not roughened, so there were small cracks along this interface 
before testing began. At early load increments, these cracks expanded, indicating some 
bending in the diaphragms (Figure 7.26). Initial web shear cracking in the girder was 
observed by members of the research group at a load of 55 kips. Figure 7.27 shows the 
load versus deflection plot for the initial 60 kips of load. The initial observed crack is 
marked on this figure and the location where slope changed is also marked. It is likely 
the first crack occurred at a load closer to 43 kips. The initial web shear crack is shown 
in Figure 7.28. Slip at the loaded girder is shown in Figure 7.29. 
 

 
Figure 7.25: Sensor layout for scale bridge test to failure 
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Figure 7.26: Cracking at diaphragm-girder interface 

 

 
Figure 7.27: Initial load versus deflection for the scaled bridge destructive test at the 

load point 
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Figure 7.28: Initial web shear crack in the loaded girder (highlighted with a red and black 

dashed line)  
 

 
Figure 7.29: Strand slip in loaded girder (dial gauge measurements) 

 
After initial cracking, load was increased at 2 kip increments. Shear cracks 

extended into the bottom flange at a load of 57 kips. At a load of 63 kips a flexural crack 
was observed. It is very likely that this crack appeared before this load, but direct 
observation was difficult because of the crack’s interior location. This crack is shown in 
Figure 7.30. At this load, there was approximately 0.02 in. of slip in the strands of the 
loaded girder. It is possible that these apparent slip measurements were affected by 
shifting concrete at the end while the diaphragms cracked and separated from the 
girders. At a load of 67 kips, another shear crack appeared roughly 2 ft into the span 
from the previous crack (Figure 7.31). Between 67 and 75 kips of load, a bond shear 
type crack appeared on the loaded girder and a diagonal crack indicative of two-way 
slab bending behavior appeared in the deck (Figure 7.32). The slab crack extended 
from the southeast corner of the bridge where the diaphragm and slab meet to the load 
point. 
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Figure 7.30: Cracking at 63 kips of load (a) flexural crack near midspan, (b) shear crack 

near the support for the loaded girder 
 

 
Figure 7.31: Cracking at 67 kips of load for the loaded girder 

 

 
Figure 7.32: Bond shear crack in the loaded girder (left) and diagonal crack in slab 

(right) 
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At a load of 78 kips, cracking in the end girder (southernmost) occurred at the 
bolted connection to the diaphragm. More adequate cover to the connection should 
have been provided, but the bolt hole spacer shifted during concrete placement (Figure 
7.33). The horizontal crack at the web to flange interface on the girder indicates torsion 
in the end girder. Load was applied up to a maximum of 96.4 kips, at which point there 
was extensive cracking to the loaded girder, including a horizontal crack where the deck 
connected to the girder. The load point also punched through the slab at the maximum 
load. Figure 7.34 shows the load versus deflection plot for the test. The northernmost 
girder (A3) raised off of its supports by the end of the test (Figure 7.35).  
 

The loaded girder experienced a failure that was very similar to the individual 
scale section C2s. Cracking and slip was observed at a higher load for the bridge 
section than for the individual section. The ultimate capacity was also greatly increased, 
from 42.4 kips in the individual section, to 96.4 kips in the bridge deck. This is an 
increase of 127%. The girder had much larger post cracking and post slip stiffness due 
to the transfer of load through the diaphragm and the slab. After the loaded girder 
cracks, the diaphragms and their connections to the girders are of concern. These 
locations, as well as the slab are the focus of much of the damage apart from the 
loaded girder. The outer girder has potential to be damaged by torsion when large 
forced are applied to the first interior girder based on this test.  

 

 
Figure 7.33: Cracking at the diaphragm to girder connection for the exterior girder 

nearest the load point 
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Figure 7.34: Load versus deflection plot for the destructive test of the scaled bridge 

section showing curves for each girder 
 

More pictures are included of the final state of the bridge showing final cracking 
and deterioration. Despite the limitations of the manner in which this bridge section was 
scaled down, this test provided useful information about the ultimate strength behavior 
of bridge sections. It would be expected that if a single girder were tested and the 
strength was limited by its shear capacity or by strand slip, the full-scale section would 
distribute the force, increasing the post-cracking stiffness. It is unclear based on this test 
how the behavior would be affected by multiple load points across the bridge, such as 
two trucks located side-by-side. Figures 7.36-7.40 show additional views of the damage 
to the bridge section.  
 



154 
 

 
Figure 7.35: Girder A3 raised off of supports at (a) the east support and (b) the west 

support 
 

 
Figure 7.36: Shear cracking of loaded girder at failure 
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Figure 7.37: Diaphragm to girder connection at girder A4 at failure 

 

 
Figure 7.38: Punching shear in scaled bridge section deck at failure 
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Figure 7.39: Deflection of scaled bridge section deck near the load point 

 

 
Figure 7.40: Cracking in scaled bridge section slab at failure 

 

7.5 Connection to Analysis 
The capacities of the small-scale beam specimens were calculated during design 

using the same methods used to analyze girders A and C. Similar loading configuration 
and a/d ratios used for testing girders A and C were used in testing the small-scale 
individual beam specimens. The results of the small-scale tests will be compared to the 
large-scale results and calculated capacities. The results of the composite bridge 
section elastic tests at varying load points and to failure will be compared to the 
individual small-scale and large-scale beam tests and to analysis models in order to 
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extract the effects of load transfer between beams on shear capacity of the composite 
system. The initial analysis model created for the scale bridge using LEAP Bridge 
Concrete is shown in Figure 7.41 and will be used to analyze the effects of varying 
loadings and load configurations once calibrated using the scale bridge test data. These 
results will then be extrapolated to the full bridge model using the same program. 

 

 
Figure 7.41: Model of scaled bridge section made using LEAP Bridge Concrete  

8. Summary and Conclusions 

The project described in this report primarily consisted of evaluation of the 
behavior of two prestressed concrete bridge girders representative of separate designs 
for 30 ft and 46 ft spans and removed from service after more than 45 years. Both 
girders were subjected to a battery of non-destructive tests to assess the effects of 
damage over time and to destructive shear testing at each end. The project included an 
examination of the contribution of the bridge deck and entire bridge system to shear 
capacity through testing the real-world girders with a section of the original deck and 
diaphragms intact, through construction and testing of a scaled composite bridge 
section, and through detailed structural analysis. This research provided important 
information on the structural and composite behavior of aged prestressed girder bridges 
critical to shear and on methods for identifying properties of aged members, structural 
health monitoring, and damage detection. As has been reported in the literature, shear 
capacity calculations can vary dramatically. For the tests described in this paper there 
was little agreement between different methods. However, the full-size girders that were 
tested had strengths in excess of predicted values for the failure type experienced and 
showed good ductility before failure despite having been in service for more than 45 
years.  
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Specific conclusions drawn from this work are: 
 

• In all shear test cases examined the applied loads exceeded expected loads 
whether determined from shear capacity calculations, flexural capacity by 
strain compatibility, or design demands from AASHTO LRFD. The 2012 
AASHTO Simplified method was not a conservative method for calculating 
shear capacity for the bridge girders tested, and this research would indicate 
that the 2004-AASHTO method is the best balance of accuracy and 
conservativism.  
 

• Corrosion at the girder ends caused some issues in behavior, especially at 
high loads. Spalling was often initiated by the corrosion cracking at the ends, 
potentially leading to bond loss. This mode of deterioration is common in 
simply supported precast concrete girder bridges in Oklahoma and should be 
taken into consideration when evaluating the shear strength of older girders 
near the supports. 

 

• Using cracking moment to identify effective prestress was found to be an 
effective method if cracking could be forced to occur primarily due to flexure. 
However, using camber measurements to identify effective prestress was less 
effective due to difficulty in accounting for the effects of creep. 

 

• The small-scale individual AASHTO girders failed earlier than expected due 
to bond issues with the relatively large prestressing strands used compared to 
the section size. The small-scale composite bridge section resisted 
significantly larger loads (approximately 125% larger) compared to the 
individual girders indicating a significant effect on section capacity. 

 

• End and interior diaphragms contributed to load transfer between girders in 
the test of the scaled bridge section. Differences in diaphragm construction 
used over the years in Oklahoma may reduce the general application of this 
conclusion. 

 

• To predict time-dependent behaviors of pretensioned concrete, a simple yet 
effective 1-D model was established by leveraging an existing initial value 
problem model for concrete creep and strand relaxation in post-tensioned 
concrete and Guyon’s instantaneous elastic shortening analysis based on a 
boundary value problem. By directly utilizing simple measurements (draw-in 
time history measured from a pretensioned concrete beam) and other section 
and material properties, many facets of bond-transfer behavior can be 
predicted. The proposed method was validated to the best extent possible 
with available data. Drying shrinkage of concrete causes the most significant 
unmodeled error; the effect of which is discussed for future work. The 
principle and procedure of injecting draw-in time history measurement to time-
dependent modeling of pretensioned concrete - as a critical piece of 
information - have been established in this study. The work enables feasible 
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field implementation and practical application of this data-based method to 
clarify and explain actual bond transfer behavior critical to long-term 
performance of pretensioned concrete. 

 

• Improvements were made to the backbone technique used for processing 
free vibration response data for nonlinear system identification and damage 
detection purposes through this project. This technique provides an additional 
step in extracting useful information regarding the state of infrastructure 
elements from collected data. 

 
In this study, we have extensively and intensively studied experimental data 

collected from the precious full-scale real-world specimens by focusing on identifying 
the underlying governing properties, whose values would otherwise be assumed with a 
great deal of uncertainties and inaccuracies involved. The purpose of this important 
aspect of our investigation is to facilitate the collection and analysis of field data from 
the aging highway bridges in Oklahoma (and other states in the U.S.) in the future so 
that the structural integrity of these bridges in question could be evaluated correctly and 
effectively by the most reliable source of information. The field data could be long-term 
monitoring and/or short-term field testing data, the choice of which should stem from in-
house studies like the ones in this project. Here in this project, we have either 
developed new theoretical approach (see Section 4.5)  and robust numerical algorithms 
(see Section 5) or collected a large amount of reliable data measurements (see Section 
6.1) – in addition to other initial attempts (see Sections 6.2 and 6.3). Future studies 
could synthesize these efforts by taking an integrative approach. The road to success 
would not be easy, however the utilization of field data, the most reliable source of 
information, to assess the integrity of aging highway bridges in question, should remain 
as our strongest motivation.  
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